Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Medical Specialties

Old Dominion University

Series

Rabbits

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Biomedical Engineering and Bioengineering

Electroporation Safety Factor Of 300 Nanosecond And 10 Millisecond Defibrillation In Langendorff-Perfused Rabbit Hearts, Johanna U. Neuber, Andrei G. Pakhomov, Christian W. Zemlin Jan 2021

Electroporation Safety Factor Of 300 Nanosecond And 10 Millisecond Defibrillation In Langendorff-Perfused Rabbit Hearts, Johanna U. Neuber, Andrei G. Pakhomov, Christian W. Zemlin

Bioelectrics Publications

Aims

Recently, a new defibrillation modality using nanosecond pulses was shown to be effective at much lower energies than conventional 10 millisecond monophasic shocks in ex vivo experiments. Here we compare the safety factors of 300 nanosecond and 10 millisecond shocks to assess the safety of nanosecond defibrillation.

Methods and results

The safety factor, i.e. the ratio of median effective doses (ED50) for electroporative damage and defibrillation, was assessed for nanosecond and conventional (millisecond) defibrillation shocks in Langendorff-perfused New Zealand white rabbit hearts. In order to allow for multiple shock applications in a single heart, a pair of needle electrodes …


Ablation Of Myocardial Tissue With Nanosecond Pulsed Electric Fields, Fei Xie, Frency Varghese, Andrei G. Pakhomov, Iurii Semenov, Shu Xiao, Jonathan Philpott, Christian Zemlin Jan 2015

Ablation Of Myocardial Tissue With Nanosecond Pulsed Electric Fields, Fei Xie, Frency Varghese, Andrei G. Pakhomov, Iurii Semenov, Shu Xiao, Jonathan Philpott, Christian Zemlin

Bioelectrics Publications

Background

Ablation of cardiac tissue is an essential tool for the treatment of arrhythmias, particularly of atrial fibrillation, atrial flutter, and ventricular tachycardia. Current ablation technologies suffer from substantial recurrence rates, thermal side effects, and long procedure times. We demonstrate that ablation with nanosecond pulsed electric fields (nsPEFs) can potentially overcome these limitations.

Methods

We used optical mapping to monitor electrical activity in Langendorff-perfused New Zealand rabbit hearts (n = 12). We repeatedly inserted two shock electrodes, spaced 2–4 mm apart, into the ventricles (through the entire wall) and applied nanosecond pulsed electric fields (nsPEF) (5–20 kV/cm, 350 ns duration, …