Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Biomedical Engineering and Bioengineering

Acute Effect Of High‑Definition And Conventional Tdcs On Exercise Performance And Psychophysiological Responses In Endurance Athletes: A Randomized Controlled Trial, Daniel Gomes Da Silva Machado, Marom Bikson, Abhishek Datta, Egas Caparelli‑Dáquer, Gozde Unal, Abrahão F. Baptista, Edilson Serpeloni Cyrino, Li Min Li, Edgard Morya, Alexandre Moreira, Alexandre Hideki Okano Jul 2021

Acute Effect Of High‑Definition And Conventional Tdcs On Exercise Performance And Psychophysiological Responses In Endurance Athletes: A Randomized Controlled Trial, Daniel Gomes Da Silva Machado, Marom Bikson, Abhishek Datta, Egas Caparelli‑Dáquer, Gozde Unal, Abrahão F. Baptista, Edilson Serpeloni Cyrino, Li Min Li, Edgard Morya, Alexandre Moreira, Alexandre Hideki Okano

Publications and Research

Transcranial direct current stimulation (tDCS) has been used aiming to boost exercise performance and inconsistent findings have been reported. One possible explanation is related to the limitations of the so-called “conventional” tDCS, which uses large rectangular electrodes, resulting in a diffuse electric field. A new tDCS technique called high-definition tDCS (HD-tDCS) has been recently developed. HD-tDCS uses small ring electrodes and produces improved focality and greater magnitude of its aftereffects. This study tested whether HD-tDCS would improve exercise performance to a greater extent than conventional tDCS. Twelve endurance athletes (29.4 ± 7.3 years; 60.15 ± 5.09 ml kg− 1 min− …


Detection Methods And Clinical Applications Of Circulating Tumor Cells In Breast Cancer, Hongyi Zhang, Xiaoyan Lin, Yuan Huang, Minghong Wang, Chunmei Cen, Shasha Tang, Marcia R. Dique, Lu Cai, Manuel A. Luis, Jillian Smollar, Yuan Wan, Fengfeng Cai Jun 2021

Detection Methods And Clinical Applications Of Circulating Tumor Cells In Breast Cancer, Hongyi Zhang, Xiaoyan Lin, Yuan Huang, Minghong Wang, Chunmei Cen, Shasha Tang, Marcia R. Dique, Lu Cai, Manuel A. Luis, Jillian Smollar, Yuan Wan, Fengfeng Cai

Publications and Research

Circulating Tumor Cells (CTCs) are cancer cells that split away from the primary tumor and appear in the circulatory system as singular units or clusters, which was first reported by Dr. Thomas Ashworth in 1869. CTCs migrate and implantation occurs at a new site, in a process commonly known as tumor metastasis. In the case of breast cancer, the tumor cells often migrate into locations such as the lungs, brain, and bones, even during the early stages, and this is a notable characteristic of breast cancer. Survival rates have increased significantly over the past few decades because of progress made …


Nanoanalytical Analysis Of Bisphosphonate-Driven Alterations Of Microcalcifications Using A 3d Hydrogel System And In Vivo Mouse Model, Jessica L. Ruiz, Joshua D. Hutcheson, Luis Cardoso, Amirala Bakhshian Nik, Alexandra Condado De Abreu, Tan Pham, Fabrizio Buffolo, Sara Busatto, Stefania Frederici, Andrea Ridolfi, Masanori Aikawa, Sergio Bertazzo, Paolo Bergese, Sheldon Weinbaum, Elena Aikawa Apr 2021

Nanoanalytical Analysis Of Bisphosphonate-Driven Alterations Of Microcalcifications Using A 3d Hydrogel System And In Vivo Mouse Model, Jessica L. Ruiz, Joshua D. Hutcheson, Luis Cardoso, Amirala Bakhshian Nik, Alexandra Condado De Abreu, Tan Pham, Fabrizio Buffolo, Sara Busatto, Stefania Frederici, Andrea Ridolfi, Masanori Aikawa, Sergio Bertazzo, Paolo Bergese, Sheldon Weinbaum, Elena Aikawa

Publications and Research

Vascular calcification predicts atherosclerotic plaque rupture and cardiovascular events. Retrospective studies of women taking bisphosphonates (BiPs), a proposed therapy for vascular calcification, showed that BiPs paradoxically increased morbidity in patients with prior acute cardiovascular events but decreased mortality in event-free patients. Calcifying extracellular vesicles (EVs), released by cells within atherosclerotic plaques, aggregate and nucleate calcification. We hypothesized that BiPs block EV aggregation and modify existing mineral growth, potentially altering microcalcification morphology and the risk of plaque rupture. Three-dimensional (3D) collagen hydrogels incubated with calcifying EVs were used to mimic fibrous cap calcification in vitro, while an ApoE−/− mouse was used …


Development Of An Injectable Methylcellulose Hydrogel System For Nucleus Pulposus Repair And Regeneration, Nada A. Haq-Siddiqi Jan 2021

Development Of An Injectable Methylcellulose Hydrogel System For Nucleus Pulposus Repair And Regeneration, Nada A. Haq-Siddiqi

Dissertations and Theses

Low back pain is the most common cause of disability in the world and is often caused by degeneration or injury of the intervertebral disc (IVD). The IVD is a complex, fibrocartilaginous tissue that allows for the wide range of spinal mobility. Disc degeneration is a progressive condition believed to begin in the central, gelatinous nucleus pulposus (NP) region of the tissue, for which there are few preventative therapies. Current therapeutic strategies include pain management and exercise, or surgical intervention such as spinal fusion, none of which address the underlying cause of degeneration. With an increasingly aging population, the socioeconomic …