Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Biomedical Engineering and Bioengineering

Multiple And Consecutive Genome Editing Using I-Gonad And Breeding Enrichment Facilitates The Production Of Genetically Modified Mice, Carolina R Melo-Silva, Cory J Knudson, Lingjuan Tang, Samita Kafle, Lauren E. Springer, Jihae Choi, Christopher M. Snyder, Yajing Wang, Sangwon V. Kim, Luis J. Sigal May 2023

Multiple And Consecutive Genome Editing Using I-Gonad And Breeding Enrichment Facilitates The Production Of Genetically Modified Mice, Carolina R Melo-Silva, Cory J Knudson, Lingjuan Tang, Samita Kafle, Lauren E. Springer, Jihae Choi, Christopher M. Snyder, Yajing Wang, Sangwon V. Kim, Luis J. Sigal

Department of Microbiology and Immunology Faculty Papers

Genetically modified (GM) mice are essential tools in biomedical research. Traditional methods for generating GM mice are expensive and require specialized personnel and equipment. The use of clustered regularly interspaced short palindromic repeats (CRISPR) coupled with improved-Genome editing via Oviductal Nucleic Acids Delivery (i-GONAD) has highly increased the feasibility of producing GM mice in research laboratories. However, genetic modification in inbred mouse strains of interest such as C57BL/6 (B6) is still challenging because of their low fertility and embryo fragility. We have successfully generated multiple novel GM mouse strains in the B6 background while attempting to optimize i-GONAD. We found …


A Spatial Model Of Hepatic Calcium Signaling And Glucose Metabolism Under Autonomic Control Reveals Functional Consequences Of Varying Liver Innervation Patterns Across Species, Aalap Verma, Alexandra Manchel, Rahul Narayanan, Jan B. Hoek, Babatunde A Ogunnaike, Rajanikanth Vadigepalli Nov 2021

A Spatial Model Of Hepatic Calcium Signaling And Glucose Metabolism Under Autonomic Control Reveals Functional Consequences Of Varying Liver Innervation Patterns Across Species, Aalap Verma, Alexandra Manchel, Rahul Narayanan, Jan B. Hoek, Babatunde A Ogunnaike, Rajanikanth Vadigepalli

Department of Pathology, Anatomy, and Cell Biology Faculty Papers

Rapid breakdown of hepatic glycogen stores into glucose plays an important role during intense physical exercise to maintain systemic euglycemia. Hepatic glycogenolysis is governed by several different liver-intrinsic and systemic factors such as hepatic zonation, circulating catecholamines, hepatocellular calcium signaling, hepatic neuroanatomy, and the central nervous system (CNS). Of the factors regulating hepatic glycogenolysis, the extent of lobular innervation varies significantly between humans and rodents. While rodents display very few autonomic nerve terminals in the liver, nearly every hepatic layer in the human liver receives neural input. In the present study, we developed a multi-scale, multi-organ model of hepatic metabolism …


Robust Dynamic Balance Of Ap-1 Transcription Factors In A Neuronal Gene Regulatory Network., Gregory M Miller, Babatunde A Ogunnaike, James S Schwaber, Rajanikanth Vadigepalli Jan 2010

Robust Dynamic Balance Of Ap-1 Transcription Factors In A Neuronal Gene Regulatory Network., Gregory M Miller, Babatunde A Ogunnaike, James S Schwaber, Rajanikanth Vadigepalli

Department of Pathology, Anatomy, and Cell Biology Faculty Papers

BACKGROUND: The octapeptide Angiotensin II is a key hormone that acts via its receptor AT1R in the brainstem to modulate the blood pressure control circuits and thus plays a central role in the cardiac and respiratory homeostasis. This modulation occurs via activation of a complex network of signaling proteins and transcription factors, leading to changes in levels of key genes and proteins. AT1R initiated activity in the nucleus tractus solitarius (NTS), which regulates blood pressure, has been the subject of extensive molecular analysis. But the adaptive network interactions in the NTS response to AT1R, plausibly related to the development of …