Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Biomedical Engineering and Bioengineering

Eigenstrain As A Mechanical Set-Point Of Cells, Shengmao Lin, Marsha C. Lampi, Cynthia A. Reinhart-King, Gary C.P. Tsui, Jian Wang, Carl A. Nelson, Linxia Gu Feb 2018

Eigenstrain As A Mechanical Set-Point Of Cells, Shengmao Lin, Marsha C. Lampi, Cynthia A. Reinhart-King, Gary C.P. Tsui, Jian Wang, Carl A. Nelson, Linxia Gu

Department of Mechanical and Materials Engineering: Faculty Publications

Cell contraction regulates how cells sense their mechanical environment. We sought to identify the set-point of cell contraction, also referred to as tensional homeostasis. In this work, bovine aortic endothelial cells (BAECs), cultured on substrates with different stiffness, were characterized using traction force microscopy (TFM). Numerical models were developed to provide insights into the mechanics of cell–substrate interactions. Cell contraction was modeled as eigenstrain which could induce isometric cell contraction without external forces. The predicted traction stresses matched well with TFM measurements. Furthermore, our numerical model provided cell stress and displacement maps for inspecting the fundamental regulating mechanism of cell …


Expanded 3d Nanofiber Scaffolds: Cell Penetration, Neovascularization, And Host Response, Jiang Jiang, Zhuoran Li, Hongjun Wang, Yue Wang, Mark A. Carlson, Matthew J. Teusink, Matthew R. Macewan, Linxia Gu, Jingwei Xie Jan 2016

Expanded 3d Nanofiber Scaffolds: Cell Penetration, Neovascularization, And Host Response, Jiang Jiang, Zhuoran Li, Hongjun Wang, Yue Wang, Mark A. Carlson, Matthew J. Teusink, Matthew R. Macewan, Linxia Gu, Jingwei Xie

Department of Mechanical and Materials Engineering: Faculty Publications

Herein, a robust method to fabricate expanded nanofiber scaffolds with controlled size and thickness using a customized mold during the modified gas-foaming process is reported. The expansion of nanofiber membranes is also simulated using a computational fluid model. Expanded nanofiber scaffolds implanted subcutaneously in rats show cellular infiltration, whereas non-expanded scaffolds only have surface cellular attachment. Compared to unexpanded nanofiber scaffolds, more CD68+ and CD163+ cells are observed within expanded scaffolds at all tested time points post-implantation. More CCR7+ cells appear within expanded scaffolds at week 8 post-implantation. In addition, new blood vessels are present within the expanded scaffolds at …


Systems Biology Of The Functional And Dysfunctional Endothelium, Jennifer Frueh, Nataly Maimari, Takayuki Homma, Sandra M. Bovens, Ryan M. Pedrigi, Leila Towhidi, Rob Krams Jan 2013

Systems Biology Of The Functional And Dysfunctional Endothelium, Jennifer Frueh, Nataly Maimari, Takayuki Homma, Sandra M. Bovens, Ryan M. Pedrigi, Leila Towhidi, Rob Krams

Department of Mechanical and Materials Engineering: Faculty Publications

This review provides an overview of the effect of blood flow on endothelial cell (EC) signalling pathways, applying microarray technologies to cultured cells, and in vivo studies of normal and atherosclerotic animals. It is found that in cultured ECs, 5–10% of genes are up- or down-regulated in response to fluid flow, whereas only 3–6% of genes are regulated by varying levels of fluid flow. Of all genes, 90%are regulated by the steady part of fluid flow and 10% by pulsatile components. The associated gene profiles show high variability from experiment to experiment depending on experimental conditions, and importantly, the bioinformatical …


Implementation Of Magnetic Resonance Elastography For The Investigation Of Traumatic Brain Injuries, Thomas Boulet Dec 2012

Implementation Of Magnetic Resonance Elastography For The Investigation Of Traumatic Brain Injuries, Thomas Boulet

Department of Engineering Mechanics: Dissertations, Theses, and Student Research

Magnetic resonance elastography (MRE) is a potentially transformative imaging modality allowing local and non-invasive measurement of biological tissue mechanical properties. It uses a specific phase contrast MR pulse sequence to measure induced vibratory motion in soft material, from which material properties can be estimated. Compared to other imaging techniques, MRE is able to detect tissue pathology at early stages by quantifying the changes in tissue stiffness associated with diseases. In an effort to develop the technique and improve its capabilities, two inversion algorithms were written to evaluate viscoelastic properties from the measured displacements fields. The first one was based on …


Propagation Of Ultrasound Through Freshly Excised Human Calvarium, Armando Garcia Noguera Jul 2012

Propagation Of Ultrasound Through Freshly Excised Human Calvarium, Armando Garcia Noguera

Department of Engineering Mechanics: Dissertations, Theses, and Student Research

The propagation of ultrasound through complex biological media, such as the human calvarium, poses a great challenge for modern medicine. Several ultrasonic techniques commonly used for treatment and diagnosis in most of the human body are still difficult to apply to the human brain, in part, because of the properties of the skull. Moreover, an understanding of the biomechanics of transcranial ultrasound may provide needed insight into the problem of blast wave induced traumatic brain injury (TBI). In the present study, the spatial variability of ultrasonic properties was evaluated for relevant frequencies of 0.5, 1, and 2.25 MHz. A total …


Influence Of Van Der Waals Forces On Increasing The Strength And Toughness In Dynamic Fracture Of Nanofibre Networks: A Peridynamic Approach, Florin Bobaru Ph.D. Jan 2007

Influence Of Van Der Waals Forces On Increasing The Strength And Toughness In Dynamic Fracture Of Nanofibre Networks: A Peridynamic Approach, Florin Bobaru Ph.D.

Department of Engineering Mechanics: Faculty Publications

The peridynamic method is used here to analyse the effect of van der Waals forces on the mechanical behaviour and strength and toughness properties of three-dimensional nanofibre networks under imposed stretch deformation. The peridynamic formulation allows for a natural inclusion of long-range forces (such as van der Waals forces) by considering all interactions as ‘long-range’. We use van der Waals interactions only between different fibres and do not need to model individual atoms. Fracture is introduced at the microstructural (peridynamic bond) level for the microelastic type bonds, while van der Waals bonds can reform at any time. We conduct statistical …