Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Biomedical Engineering and Bioengineering

Soft Robotic Arms For Fall Mitigation: Design, Control And Evaluation, Param Malhotra Aug 2022

Soft Robotic Arms For Fall Mitigation: Design, Control And Evaluation, Param Malhotra

All Theses

Most fall mitigation devices present a heavy system that avoid injuries to the user by preventing the impact of a fall. They are dependent on the user capability or on the probability that the user falls in the assumed manner the system was designed for. Often that is not the case, hence this project initiates a novel concept of using soft robotic arms to prevent falls from happening in the first place itself and save the user from any injuries. This thesis describes the prototype and development of a soft continuum robotic backpack system. The system can validate its use …


Manual Material Handling Lift-Assist System For Occupational Exoskeleton, Erik Goes, Daniel Guthrie, Trevor Ward May 2022

Manual Material Handling Lift-Assist System For Occupational Exoskeleton, Erik Goes, Daniel Guthrie, Trevor Ward

Honors Capstones

It is no secret that lifting heavy objects is one of the premier causes of workplace injury, and the modern worker needs help to remain healthy. Workers need something they always have with them that makes their work safer as well as easier; our solution is an active lift-assist exoskeleton. The proposed exoskeleton design includes a military backpack exoskeleton frame, on which two actuators pull cables attached to end effectors that the operator will be holding. This system can adjust to conform to a wide variety of operator sizes, without restricting any of their range of motion. This leads to …


Developing New Crutch Tip Design For Overall Increased Stability And Improved Movement On Different Terrains, Lauren Skinner May 2022

Developing New Crutch Tip Design For Overall Increased Stability And Improved Movement On Different Terrains, Lauren Skinner

Honors Theses

Crutches are a mobility assistive device that are often used in various situations, such as post- surgical rehabilitation and recovery after injury. The current crutch tip design that is used on today’s crutches are often unstable and do not provide quality movement on different terrains, such as snow, ice, mud, and wet surfaces. These problems would be solved with a new tip design that could be attached to existing crutches or manufactured with the crutch itself. The team’s solution to this problem is a crutch tip with modular parts. The tip would attach to the shaft of the crutch like …


Advanced Manufacturing Of Titanium Alloys For Biomedical Applications, Nicholas C. Mavros Jan 2018

Advanced Manufacturing Of Titanium Alloys For Biomedical Applications, Nicholas C. Mavros

ETD Archive

In metallurgy, Titanium has been a staple for biomedical purposes. Its low toxicity and alloying versatility make it an attractive choice for medical applications. However, studies have shown the difference in elastic modulus between Titanium alloys (116 GPa) and human bone (40-60 GPa) contribute to long term issues with loose hardware fixation. Additionally, long term studies have shown elements such as Vanadium and Aluminum, which are commonly used in Ti-6Al-4V biomedical alloys, have been linked to neurodegenerative diseases like Alzheimers and Parkinsons. Alternative metals known to be less toxic are being explored as replacements for alloying elements in Titanium alloys. …


A Magnetic Resonance Compatible Knee Extension Ergometer, Youssef Jaber Jul 2017

A Magnetic Resonance Compatible Knee Extension Ergometer, Youssef Jaber

Masters Theses

The product of this thesis aims to enable the study of the biochemical and physical dynamics of the lower limbs at high levels of muscle tension and fast contraction speeds. This is accomplished in part by a magnetic resonance (MR) compatible ergometer designed to apply a load as a torque of up to 420 Nm acting against knee extension at speeds as high as 4.7 rad/s. The system can also be adapted to apply the load as a force of up to 1200 N acting against full leg extension. The ergometer is designed to enable the use of magnetic resonance …


Force Sensing In Arthroscopic Instruments Using Fiber Bragg Gratings, Daniel S. Yurkewich Apr 2015

Force Sensing In Arthroscopic Instruments Using Fiber Bragg Gratings, Daniel S. Yurkewich

Electronic Thesis and Dissertation Repository

Minimally-invasive surgery has revolutionized many medical procedures; however, it also impedes the ability to feel the interaction between the surgical tool and the anatomical part being operated on. In order to address this problem, it is necessary to obtain accurate measurements of the interaction forces exerted on the surgical tools during surgery. These forces can then be manifested to the surgeon via a haptic device or presented visually (visual-force feedback). This thesis describes the use of a fiber optic device to measure and display to the surgeon interaction forces acting on an arthroscopic tool. The sensorization of the tool involves …