Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Biomedical Engineering and Bioengineering

Shape Memory Alloy Capsule Micropump For Drug Delivery Applications, Youssef Mohamed Kotb Jun 2024

Shape Memory Alloy Capsule Micropump For Drug Delivery Applications, Youssef Mohamed Kotb

Theses and Dissertations

Implantable drug delivery devices have many benefits over traditional drug administration techniques and have attracted a lot of attention in recent years. By delivering the medication directly to the tissue, they enable the use of larger localized concentrations, enhancing the efficacy of the treatment. Passive-release drug delivery systems, one of the various ways to provide medication, are great inventions. However, they cannot dispense the medication on demand since they are nonprogrammable. Therefore, active actuators are more advantageous in delivery applications. Smart material actuators, however, have greatly increased in popularity for manufacturing wearable and implantable micropumps due to their high energy …


Redesign Of Leg Assembly For Remote Walking Training Device To Improve Gait Kinematics, Jacob Anthony May 2024

Redesign Of Leg Assembly For Remote Walking Training Device To Improve Gait Kinematics, Jacob Anthony

Mechanical Engineering Theses

As modern medicine has improved, the average age of patients has increased. This has cause a growing number of patients to develop disabilities over time due to spinal cord injuries and stroke among other neurological ailments. This has led to an increased interest in developing robotic exoskeletons to help patients with neuromuscular rehabilitation. However, most exoskeletons do not accurately replicate the natural human gait kinematics due to a lack of degrees of freedom at the designed knee joint. In this thesis, the leg assembly for a robotic rehabilitation (RoboREHAB) device is redesigned to improve the gait kinematics and a reinforcement …


Analyzing Heat Generated From Electro-Osmotic Flow Utilizing Computational Fluid Dynamics, Jordan Elizabeth Grothe May 2024

Analyzing Heat Generated From Electro-Osmotic Flow Utilizing Computational Fluid Dynamics, Jordan Elizabeth Grothe

Honors Thesis

Without extensive vascularization, the transfer of fluid and nutrients through human tissue is limited to diffusion and weak interstitial flow. Electroosmosis, or the flow of fluid driven by an electrical field, has become a promising solution. Scientists have begun applying electricity to human tissue to promote stronger interstitial flow; however, optimization of this process has proven to be a challenge due to ohmic heating. Cells function within a small range of temperatures and exposure to voltages exceeding the threshold will cause cells to degrade and die prematurely. This research seeks to better understand and quantify the range of voltage where …


Environment And Response Of 3d-Encapsulated Mesenchymal Stem Cells To Mechanical Loading, Augustus Greenwood May 2024

Environment And Response Of 3d-Encapsulated Mesenchymal Stem Cells To Mechanical Loading, Augustus Greenwood

McKelvey School of Engineering Theses & Dissertations

This thesis explores the micromechanical environment induced when cyclically compressing hydrogels via finite element modeling and experimentally on the impact of loading on mesenchymal stem cells (MSCs) when encapsulated withing 3D hydrogel matrices. Degenerative joint diseases, characterized by cartilage degradation, present significant challenges due to cartilage's limited self-repair capacity. Innovative approaches, including stem cell-based therapies and engineered biomaterials, have emerged as promising strategies for cartilage repair and regeneration. This work specifically investigates the calibration of a bioreactor, the uniformity of load response across the hydrogel constructs via finite element modeling (FEM), and the stress response of MSCs subjected to various …


Redesign Of Robotic Walking Training Device To Involve Zero Gravity Capabilities And Daily Activities, Chad Ballard Apr 2024

Redesign Of Robotic Walking Training Device To Involve Zero Gravity Capabilities And Daily Activities, Chad Ballard

Mechanical Engineering Theses

Many patients struggle with disabilities that hinder their ability to walk. This project aimed to create a leg assembly capable of variable gravity so that it could be combined with a Robotic Walking Training Device, and lead to better rehabilitation options for patients. This was accomplished by deriving equations of joint torque, creating circuit diagrams for Arduino systems, modeling leg assemblies in CAD, and finally combining it to create a working small-scale prototype. The result of the prototype testing showed accurate movement on each joint, especially the ankle and knee segments, to create virtual zero gravity. In addition to this, …


Finite Element Analysis Of The Bearing Component Of Total Ankle Replacement Implants During The Stance Phase Of Gait, Timothy S. Jain Mar 2024

Finite Element Analysis Of The Bearing Component Of Total Ankle Replacement Implants During The Stance Phase Of Gait, Timothy S. Jain

Master's Theses

Total ankle replacement (TAR) implants are an effective option to restore the range of motion of the ankle joint for arthritic patients. An effective tool for analyzing these implants’ mechanical performance and longevity in-silico is finite element analysis (FEA). ABAQUS FEA was used to statically analyze the von Mises stress and contact pressure on the articulating surface of the bearing component in two newly installed fixed-bearing total ankle replacement implants (the Wright Medical INBONE II and the Exactech Vantage). This bearing component rotates on the talar component to induce primary ankle joint motion of plantarflexion and dorsiflexion. The stress response …