Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering

Series

2021

Materials Science

Articles 1 - 3 of 3

Full-Text Articles in Biomedical Engineering and Bioengineering

Nuclear Envelope Mechanobiology: Linking The Nuclear Structure And Function, Matthew Goelzer, Julianna Goelzer, Matthew L. Ferguson, Corey P. Neu, Gunes Uzer Dec 2021

Nuclear Envelope Mechanobiology: Linking The Nuclear Structure And Function, Matthew Goelzer, Julianna Goelzer, Matthew L. Ferguson, Corey P. Neu, Gunes Uzer

Mechanical and Biomedical Engineering Faculty Publications and Presentations

The nucleus, central to cellular activity, relies on both direct mechanical input as well as its molecular transducers to sense external stimuli and respond by regulating intra-nuclear chromatin organization that determines cell function and fate. In mesenchymal stem cells of musculoskeletal tissues, changes in nuclear structures are emerging as a key modulator of their differentiation and proliferation programs. In this review we will first introduce the structural elements of the nucleoskeleton and discuss the current literature on how nuclear structure and signaling are altered in relation to environmental and tissue level mechanical cues. We will focus on state-of-the-art techniques to …


Integration Of Neural Architecture Within A Finite Element Framework For Improved Neuromusculoskeletal Modeling, Victoria L. Volk, Landon D. Hamilton, Donald R. Hume, Kevin B. Shelburne, Clare K. Fitzpatrick Nov 2021

Integration Of Neural Architecture Within A Finite Element Framework For Improved Neuromusculoskeletal Modeling, Victoria L. Volk, Landon D. Hamilton, Donald R. Hume, Kevin B. Shelburne, Clare K. Fitzpatrick

Mechanical and Biomedical Engineering Faculty Publications and Presentations

Neuromusculoskeletal (NMS) models can aid in studying the impacts of the nervous and musculoskeletal systems on one another. These computational models facilitate studies investigating mechanisms and treatment of musculoskeletal and neurodegenerative conditions. In this study, we present a predictive NMS model that uses an embedded neural architecture within a finite element (FE) framework to simulate muscle activation. A previously developed neuromuscular model of a motor neuron was embedded into a simple FE musculoskeletal model. Input stimulation profiles from literature were simulated in the FE NMS model to verify effective integration of the software platforms. Motor unit recruitment and rate coding …


Three-Dimensional Phase Field Modeling Of Fracture In Shape Memory Ceramics, Ehsan Moshkelgosha, Mahmood Mamivand Aug 2021

Three-Dimensional Phase Field Modeling Of Fracture In Shape Memory Ceramics, Ehsan Moshkelgosha, Mahmood Mamivand

Mechanical and Biomedical Engineering Faculty Publications and Presentations

Despite the vast applications of transformable ceramics, such as zirconia-based ceramics, in different areas from biomedical to aerospace, the fundamental knowledge about their mechanical degradation procedure is limited. The interaction of the phase transformation and crack growth is crucial as the essential underlying mechanism in fracture of these transformable ceramics, also known as shape memory ceramics. This study develops a three-dimensional (3D) multiphysics model that couples the variational formulation of brittle crack growth to the Ginzburg-Landau equations of martensitic transformation. We parameterized the model for the 3D single crystal zirconia, which experienced stress- and thermal-induced tetragonal to monoclinic transformation. The …