Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 17 of 17

Full-Text Articles in Biomedical Engineering and Bioengineering

Finite Element Analysis Of The Bearing Component Of Total Ankle Replacement Implants During The Stance Phase Of Gait, Timothy S. Jain Mar 2024

Finite Element Analysis Of The Bearing Component Of Total Ankle Replacement Implants During The Stance Phase Of Gait, Timothy S. Jain

Master's Theses

Total ankle replacement (TAR) implants are an effective option to restore the range of motion of the ankle joint for arthritic patients. An effective tool for analyzing these implants’ mechanical performance and longevity in-silico is finite element analysis (FEA). ABAQUS FEA was used to statically analyze the von Mises stress and contact pressure on the articulating surface of the bearing component in two newly installed fixed-bearing total ankle replacement implants (the Wright Medical INBONE II and the Exactech Vantage). This bearing component rotates on the talar component to induce primary ankle joint motion of plantarflexion and dorsiflexion. The stress response …


Rattus Norvegicus As A Biological Detector Of Clandestine Remains And The Use Of Ultrasonic Vocalizations As A Locating Mechanism, Gabrielle M. Johnston May 2023

Rattus Norvegicus As A Biological Detector Of Clandestine Remains And The Use Of Ultrasonic Vocalizations As A Locating Mechanism, Gabrielle M. Johnston

Master's Theses

In investigations, locating missing persons and clandestine remains are imperative. One way that first responder and police agencies can search for the remains is by using cadaver dogs as biological detectors. Cadaver dogs are typically used due to their olfactory sensitivity and ability to detect low concentrations of volatile organic compounds produced by biological remains. Cadaver dogs are typically chosen for their stamina, agility, and olfactory sensitivity. However, what is not taken into account often is the size of the animal and the expense of maintaining and training the animal. Cadaver dogs are typically large breeds that cannot fit in …


Trace Dna Detection Using Diamond Dye: A Recovery Technique To Yield More Dna, Leah Davis May 2023

Trace Dna Detection Using Diamond Dye: A Recovery Technique To Yield More Dna, Leah Davis

Master's Theses

This study aspires to find a new screening approach to trace DNA recovery techniques to yield a higher quantity of trace DNA from larger items of evidence. It takes the path of visualizing trace DNA on items of evidence with potential DNA so analysts can swab a more localized area rather than attempting to recover trace DNA through the general swabbing technique currently used for trace DNA recovery. The first and second parts consisted of observing trace DNA interaction with Diamond Dye on porous and non-porous surfaces.

The third part involved applying the Diamond Dye solution by spraying it onto …


Hypoxic Incubation Chamber, Simone Lisette Helfrich, Makenzie Nicole Jones Nov 2022

Hypoxic Incubation Chamber, Simone Lisette Helfrich, Makenzie Nicole Jones

Master's Theses

This paper describes the design, manufacturing, and testing of a novel controllable hypoxic incubator with fully functional oxygen gas control and temperature control in a humid environment. On the current market, a majority of the few hypoxic incubators use pre-mixed gas that does not offer precise control over gas concentration. The objective for this project was to create a chamber that allows the user to set the O2 concentration to varying set points of % O2 while maintaining the chamber at a constant body temperature, CO2 level, humidity, and sterility. To start the project, multiple concepts were developed for the …


Understanding The Effects Of Long-Duration Spaceflight On Fracture Risk In The Human Femur Using Finite Element Analysis, Keyanna Brielle Henderson Dec 2020

Understanding The Effects Of Long-Duration Spaceflight On Fracture Risk In The Human Femur Using Finite Element Analysis, Keyanna Brielle Henderson

Master's Theses

Long-duration spaceflight has been shown to have significant, lasting effects on the bone strength of astronauts and to contribute to age-related complications later in life. The microgravity environment of space causes a decrease in daily mechanical loading, which signals a state of disuse to bone cells. This affects the bone remodeling process, which is responsible for maintaining bone mass, causing an increase in damage and a decrease in density. This leads to bone fragility and decreases overall strength, posing a risk for fracture. However, there is little information pertaining to the timeline of bone loss and subsequent fracture risk.

This …


Finite Element Analysis Of Total Knee Arthroplasty, Sean Yueh Dec 2020

Finite Element Analysis Of Total Knee Arthroplasty, Sean Yueh

Master's Theses

The total knee arthroplasty (TKA) has become one of the most successful procedures in all of medicine, with an average of over 966,000 operations performed a year. Since its introduction in 1968, the TKA’s surgical process and implant designs have continuously been improved to increase survivability. However, the need for a revision TKA – due to aseptic loosening – continues to be a problematic aspect of the procedure. Stress shielding induced by different design parameters of the implant has generated controversy in the determination of an ideal configuration. The purpose of this study is to investigate how implant design parameters …


Smartphone-Tape Method For Calculating Body Segment Inertial Parameters For Analysis Of Pitching Arm Kinetics, Jay Sterner Jun 2020

Smartphone-Tape Method For Calculating Body Segment Inertial Parameters For Analysis Of Pitching Arm Kinetics, Jay Sterner

Master's Theses

The objectives of this study were to (1) develop a non-invasive method (referred to as Smart Photo-Tape) to calculate participant-specific upper arm, forearm, and hand segment inertial properties (SIPs) (e.g. mass, center of mass, and radii of gyration) and (2) use those Smart Photo-Tape properties in inverse dynamics (ID) analyses to calculate injury-related pitching arm kinetics. Five 20- to 23- year-old baseball pitchers were photographed holding a baseball and analyzed using the Smart Photo-Tape method to obtain 3-D inertial properties for their upper arm, forearm, and hand. The upper arm and forearm segments were modelled as stacked elliptic cylinders and …


Hip And Knee Biomechanics For Transtibial Amputees In Gait, Cycling, And Elliptical Training, Greg Orekhov Dec 2018

Hip And Knee Biomechanics For Transtibial Amputees In Gait, Cycling, And Elliptical Training, Greg Orekhov

Master's Theses

Transtibial amputees are at increased risk of contralateral hip and knee joint osteoarthritis, likely due to abnormal biomechanics. Biomechanical challenges exist for transtibial amputees in gait and cycling; particularly, asymmetry in ground/pedal reaction forces and joint kinetics is well documented and state-of-the-art passive and powered prostheses do not fully restore natural biomechanics. Elliptical training has not been studied as a potential exercise for rehabilitation, nor have any studies been published that compare joint kinematics and kinetics and ground/pedal reaction forces for the same group of transtibial amputees in gait, cycling, and elliptical training. The hypothesis was that hip and knee …


The Effects Of Obesity On Resultant Knee Joint Loads For Gait And Cycling, Juan Gutierrez-Franco Jun 2016

The Effects Of Obesity On Resultant Knee Joint Loads For Gait And Cycling, Juan Gutierrez-Franco

Master's Theses

Osteoarthritis (OA) is a degenerative disease of cartilage and bone tissue and the most common form of arthritis, accounting for US$ 10.5 billion in hospital charges in 2006. Obesity (OB) has been linked to increased risk of developing knee OA due to increased knee joint loads and varus-valgus misalignment. Walking is recommended as a weight-loss activity but it may increase risk of knee OA as OB gait increases knee loads. Cycling has been proposed as an alternative weight-loss measure, however, lack of studies comparing normal weight (NW) and OB subjects in cycling and gait hinder identification of exercises that may …


Design And Analysis Of A Lift Assist Walker, Deep P. Shah Mar 2016

Design And Analysis Of A Lift Assist Walker, Deep P. Shah

Master's Theses

Walkers provided stability to the elderly but cannot assist a person from sitting to standing. The objective of this project is to present the design and analysis of a lift assist walker. This report discusses the design and analysis of a collapsible lift assist walker capable of lifting a patient up to 250 lbs. from seated to standing in under 10 seconds. The designed walker utilized a two stage scissor mechanism with a gas spring assisted embedded linear actuator.


Development And Validation Of A Tibiofemoral Joint Finite Element Model And Subsequent Gait Analysis Of Intact Acl And Acl Deficient Individuals, Nicholas Czapla Jun 2015

Development And Validation Of A Tibiofemoral Joint Finite Element Model And Subsequent Gait Analysis Of Intact Acl And Acl Deficient Individuals, Nicholas Czapla

Master's Theses

Osteoarthritis (OA) is a degenerative condition of articular cartilage that affects more than 25 million people in the US. Joint injuries, like anterior cruciate ligament (ACL) tears, can lead to OA due to a change in articular cartilage loading. Gait analysis combined with knee joint finite element modeling (FEM) has been used to predict the articular cartilage loading. To predict the change of articular cartilage loading during gait due to various ACL injuries, a tibiofemoral FEM was developed from magnetic resonance images (MRIs) of a 33 year male, with no prior history of knee injuries. The FEM was validated for …


Design And Development Of A Stair Ascension Assistive Device For Transfemoral Amputees, Casey Michael Barbarino Jun 2013

Design And Development Of A Stair Ascension Assistive Device For Transfemoral Amputees, Casey Michael Barbarino

Master's Theses

Transfemoral amputees around the world experience increased difficulty in climbing stairs due to lack of muscle, balance, and other factors. The loss of a lower limb greatly diminishes the amount of natural force generation provided that is necessary to propel oneself up stairs. This study investigated possible solutions to the problem of stair ascension for transfemoral amputees by the means of designing and developing an externally attachable device to a prosthesis. The number of amputations from military service has greatly increased since 2008, which shows there is a clear need for assistive devices (Wenke, Krueger, & Ficke, 2012). With the …


Novel Approach To Junctional Bleeding: Tourniquet Device Proposal For Battlefield Hemorrhage Control, Kyle W. Cabaniss Mar 2013

Novel Approach To Junctional Bleeding: Tourniquet Device Proposal For Battlefield Hemorrhage Control, Kyle W. Cabaniss

Master's Theses

This study investigated possible solutions to the current wartime problem of junctional hemorrhaging, or massive traumatic hemorrhaging in non-tourinquetable areas such as the neck, groin, or armpit. Junctional hemorrhaging has been identified as a major contributor to potentially survivable deaths seen on the battlefield today and therefore is a priority for the U.S. armed and coalition forces (Kragh et al., 2011a; Bozeman, 2011). Common tourniquets today are standard issue and carried by soldiers in the military, but are limited to distal extremity trauma. As the battlefield has changes however, trauma has transformed from commonly seen gunshot wounds to more extreme …


Viscoelastic Anisotropic Finite Element Mixture Model Of Articular Cartilage Using Viscoelastic Collagen Fibers And Validation With Stress Relaxation Data, Matthew Alexander Griebel Jun 2012

Viscoelastic Anisotropic Finite Element Mixture Model Of Articular Cartilage Using Viscoelastic Collagen Fibers And Validation With Stress Relaxation Data, Matthew Alexander Griebel

Master's Theses

Experimental results show that collagen fibers exhibit stress relaxation under tension and a highly anisotropic distribution. To further develop the earlier model of Stender [1], the collagen constituent was updated to reflect its intrinsic viscoelasticity and anisotropic distribution, and integrated with an existing mixture model with glycosaminoglycans and ground substance matrix. A two-term Prony series expansion of the quasi-linear viscoelastic model was chosen to model the viscoelastic properties of the collagen fibers. Material parameters were determined by using the simplex method to minimize the sum of squared errors between model results and experimental stress relaxation data of tissue in tension. …


Ros-Drill Automation: Visual Feedback Control And Rotational Motion Tracking, Jhon F. Diaz Aug 2011

Ros-Drill Automation: Visual Feedback Control And Rotational Motion Tracking, Jhon F. Diaz

Master's Theses

ICSI (intra-cytoplasmic sperm injection) has attracted research interest from both biological and engineering groups. The technology is constantly evolving to perform this procedure with precision and speed. One such development is the contribution of this thesis. We focus on a relatively recent procedure called Ros-Drill© (rotationally oscillating drill), of which the early versions have already been effectively utilized for the mice. In the first part, we present a procedure to automate a critical part of the operation: initiation of the rotational oscillation, Visual feedback is used to track the pipette tip. Predetermined species-specific penetration depth is successfully utilized …


An Investigation Of Humeral Stress Fractures In Racing Thoroughbreds Using A 3d Finite Element Model In Conjunction With A Bone Remodeling Algorithm, Ryan James Moore Feb 2010

An Investigation Of Humeral Stress Fractures In Racing Thoroughbreds Using A 3d Finite Element Model In Conjunction With A Bone Remodeling Algorithm, Ryan James Moore

Master's Theses

The humerus of a racing horse Thoroughbred is highly susceptible to stress fractures at a characteristic location as a result of cyclic loading. The propensity of a Thoroughbred to exhibit humeral fracture has made equines useful models in the epidemiology of stress fractures. In this study, a racing Thoroughbred humerus was simulated during training using a 3D finite element model in conjunction with a bone remodeling algorithm. Nine muscle forces and two contact forces were applied to the 3-dimensional finite element model, which contains four separate load cases representing fore-stance, mid-stance, aft-stance, and standing. Four different training programs were incorporated …


Mechanical Simulation Of Articular Cartilage Based On Experimental Results, Kevin Matthew Stewart Jun 2009

Mechanical Simulation Of Articular Cartilage Based On Experimental Results, Kevin Matthew Stewart

Master's Theses

Recently, a constituent based cartilage growth finite element model (CGFEM) was developed in order to predict articular cartilage (AC) biomechanical properties before and after growth. Previous research has noted limitations in the CGFEM such as model convergence with growth periods greater than 12 days. The main aims of this work were to address these limitations through (1) implementation of an exact material Jacobian matrix definition using the Jaumann-Kirchhoff (J-K) method and (2) quantification of elastic material parameters based upon research findings of the Cal Poly Cartilage Biomechanics Group (CPGBG). The J-K method was successfully implemented into the CGFEM and exceeded …