Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Biomedical Engineering and Bioengineering

Materials Design With Polylactic Acid-Polyethylene Glycol Blends Using 3d Printing And For Medical Applications., Jeremiah R. Bauer Apr 2018

Materials Design With Polylactic Acid-Polyethylene Glycol Blends Using 3d Printing And For Medical Applications., Jeremiah R. Bauer

Electronic Theses and Dissertations

This thesis is an examination of two material systems derived from polylactic acid (PLA) and polyethylene glycol (PEG). PLA is a polymer commonly sourced from renewable sources such as starches and sugars. It is a relatively strong, biodegradable polymer, making it ideal for use in the body. Even though it has a relative high strength, PLA is also brittle leading to the use of plasticizers to increase flexibility. One such plasticizer is PEG, which is a material that can exist at room temperature as either a thin liquid, or a hard waxy solid depending on the molecular weight. The first …


Computational Modeling Of Transcatheter Aortic Valves, Mostafa Abbasi Jan 2018

Computational Modeling Of Transcatheter Aortic Valves, Mostafa Abbasi

Electronic Theses and Dissertations

Transcatheter aortic valve replacement (TAVR) is an established therapy alternative to surgical valve replacement in high-risk and intermediate-risk patients with severe aortic stenosis. Currently, although TAVR is an alternative and less-invasive treatment for high-risk and intermediate-risk patients, surgical aortic valves replacement (SAVR) was still considered as the gold standard for low-risk patients. TAVR could potentially be applied to lower-risk younger patients if the indications can be safely expanded to the patients and transcatheter aortic valve (TAV) long-term durability can match with that of surgical bioprostheses. In contrast to surgical aortic valves (SAVs), there have been limited clinical data on the …


Lcd 3d Printing Of A Photocurable Elastomer For Tissue Engineering, Beatriz Luiza De Souza Jan 2018

Lcd 3d Printing Of A Photocurable Elastomer For Tissue Engineering, Beatriz Luiza De Souza

Electronic Theses and Dissertations

Three-dimensional scaffolding is an emerging research area in biomedical and tissue engineering. Scaffolds provide the possibility of growing tissues in a controlled environment, with desired characteristics and properties towards a specific application. A new method to 3D print biodegradable and biocompatible material called Polyglycerol Sebacate Acrylate (PGSA) is demonstrated. PGSA is essentially an acrylated form of PGS using photoinitiator to become a photocurable resin suitable for liquid crystal display (LCD) 3D printing. PGSA was selected because its rheological and crosslinking behavior (and hence its mechanical properties) can be controlled by changes in curing time, temperature, and pressure. This material has …