Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 10 of 10

Full-Text Articles in Biomedical Engineering and Bioengineering

Environment And Response Of 3d-Encapsulated Mesenchymal Stem Cells To Mechanical Loading, Augustus Greenwood May 2024

Environment And Response Of 3d-Encapsulated Mesenchymal Stem Cells To Mechanical Loading, Augustus Greenwood

McKelvey School of Engineering Theses & Dissertations

This thesis explores the micromechanical environment induced when cyclically compressing hydrogels via finite element modeling and experimentally on the impact of loading on mesenchymal stem cells (MSCs) when encapsulated withing 3D hydrogel matrices. Degenerative joint diseases, characterized by cartilage degradation, present significant challenges due to cartilage's limited self-repair capacity. Innovative approaches, including stem cell-based therapies and engineered biomaterials, have emerged as promising strategies for cartilage repair and regeneration. This work specifically investigates the calibration of a bioreactor, the uniformity of load response across the hydrogel constructs via finite element modeling (FEM), and the stress response of MSCs subjected to various …


Calculating The Difference In Stiffness Of Living T Cells Through Micropipette Aspiration, Minju Lee Aug 2023

Calculating The Difference In Stiffness Of Living T Cells Through Micropipette Aspiration, Minju Lee

McKelvey School of Engineering Theses & Dissertations

Cardiovascular disease (CVD) accounted for 17.9 million deaths in 2019, with fibrosis contributing to nearly a quarter of these fatalities [1,2]. Fibrosis, characterized by excessive connective tissue formation, has been strongly linked to T cells, essential components of the immune system. This study explores the mechanisms of T cell activation and the subsequent changes in biophysical properties like diameter, stiffness, and elasticity, aiming to develop therapeutic strategies for fibrosis-related diseases, including CVD. Utilizing the micropipette aspiration technique, we accurately assessed T cell stiffness and observed a change in bulk cell stiffness upon activation. The results demonstrated increased fluid-like behavior in …


Attachment Of Fibrous Materials In Nature And Surgical Repair, Ethan Daniel Hoppe Aug 2021

Attachment Of Fibrous Materials In Nature And Surgical Repair, Ethan Daniel Hoppe

McKelvey School of Engineering Theses & Dissertations

Mother nature is the ultimate problem solver. Often by brute force and necessity for survival, the organism that has the best solution to a problem is the one to proliferate. One of these problems for which nature provides an elegant solution is the attachment of dissimilar materials. This dissertation explores the strengthening and relaxation of interactions between soft and hard materials, typically with one of the two being fibrous in character, with the goal of identifying strategies for improving the surgical reattachment of tendon to bone. The work begins with a study of the plant Harpagonella palmeri, which the dissertation …


Post-Traumatic Elbow Contracture Characterization And Physical Therapy-Based Treatment Strategies In A Preclinical Model, Alex Reiter May 2021

Post-Traumatic Elbow Contracture Characterization And Physical Therapy-Based Treatment Strategies In A Preclinical Model, Alex Reiter

McKelvey School of Engineering Theses & Dissertations

The elbow is the most commonly dislocated joint in the pediatric population and second most common in adults. As one of the most congruous joints in the body, slight changes in biomechanics due to injury can lead to drastic reductions in range of motion causing potential quality of life issues. Post-traumatic joint contracture occurs in 12% of patients following elbow dislocation or fracture, and it is characterized by a loss in ROM, joint stiffness, and pain. Preventing joint contracture and functional deficits from occurring is one of the primary goals when managing these injuries. A rat model of joint contracture …


Exploring Attacks And Defenses In Additive Manufacturing Processes: Implications In Cyber-Physical Security, Nicholas Deily May 2020

Exploring Attacks And Defenses In Additive Manufacturing Processes: Implications In Cyber-Physical Security, Nicholas Deily

McKelvey School of Engineering Theses & Dissertations

Many industries are rapidly adopting additive manufacturing (AM) because of the added versatility this technology offers over traditional manufacturing techniques. But with AM, there comes a unique set of security challenges that must be addressed. In particular, the issue of part verification is critically important given the growing reliance of safety-critical systems on 3D printed parts. In this thesis, the current state of part verification technologies will be examined in the con- text of AM-specific geometric-modification attacks, and an automated tool for 3D printed part verification will be presented. This work will cover: 1) the impacts of malicious attacks on …


Design And Validation Of A Dynamic Pressure-Based Loading Device And 3d Strain Tracking Protocol For Ventral Hernia Modeling, Griffin Kivitz May 2020

Design And Validation Of A Dynamic Pressure-Based Loading Device And 3d Strain Tracking Protocol For Ventral Hernia Modeling, Griffin Kivitz

McKelvey School of Engineering Theses & Dissertations

It is estimated that 350,000-500,000 ventral hernia repair surgeries are performed each year in the United States. While the long-term recurrence rate of ventral hernia repairs is not yet known, when tissues are exposed to the trauma of surgery, there is always the chance of recurrence. Commonly used ex vivo testing methods for determining the mechanical properties of the abdominal wall and biomaterials for hernia repair consist primarily of uniaxial and biaxial testing, which are not physiologically relevant loading environments. The need for a testing device that can exert physiologically relevant loads ex vivo to an abdominal wall is crucial …


Development Of High-Speed Photoacoustic Imaging Technology And Its Applications In Biomedical Research, Yun He Dec 2019

Development Of High-Speed Photoacoustic Imaging Technology And Its Applications In Biomedical Research, Yun He

McKelvey School of Engineering Theses & Dissertations

Photoacoustic (PA) tomography (PAT) is a novel imaging modality that combines the fine lateral resolution from optical imaging and the deep penetration from ultrasonic imaging, and provides rich optical-absorption–based images. PAT has been widely used in extracting structural and functional information from both ex vivo tissue samples to in vivo animals and humans with different length scales by imaging various endogenous and exogenous contrasts at the ultraviolet to infrared spectrum. For example, hemoglobin in red blood cells is of particular interest in PAT since it is one of the dominant absorbers in tissue at the visible wavelength.The main focus of …


Mechanosensitive Epithelial Cell Scattering And Migration On Layered Matrices, Christopher Michael Walter Aug 2019

Mechanosensitive Epithelial Cell Scattering And Migration On Layered Matrices, Christopher Michael Walter

McKelvey School of Engineering Theses & Dissertations

Epithelial cells form multi-layered tissue scaffolding that makes up every organ in the body. Along with epithelial cells, the basement membrane (BM) and connective tissue are composed of various proteins that sculpt the organs and protect them from foreign macromolecules. Epithelial cells respond to various cues, both chemical and mechanical, from their surrounding matrices to aid in maintenance and repair of these layers through degradation and deposition of extracellular matrix (ECM) proteins. In cancer progression, epithelial cells lose their normal function of supporting tissue structure and instead adopt more aggressive behaviors through an epithelial-to-mesenchymal transition (EMT) of their cellular traits. …


Characterizing Anisotropy In Fibrous Soft Materials By Mr Elastography Of Slow And Fast Shear Waves, John Larson Schmidt Dec 2017

Characterizing Anisotropy In Fibrous Soft Materials By Mr Elastography Of Slow And Fast Shear Waves, John Larson Schmidt

McKelvey School of Engineering Theses & Dissertations

The general objective of this work was to develop experimental methods based on magnetic resonance elastography (MRE) to characterize fibrous soft materials. Mathematical models of tissue biomechanics capable of predicting injury, such as traumatic brain injury (TBI), are of great interest and potential. However, the accuracy of predictions from such models depends on accuracy of the underlying material parameters. This dissertation describes work toward three aims. First, experimental methods were designed to characterize fibrous materials based on a transversely isotropic material model. Second, these methods are applied to characterize the anisotropic properties of white matter brain tissue ex vivo. Third, …


Composition-Dependent Mechanisms Of Multiscale Tendon Mechanics, Fei Fang Aug 2017

Composition-Dependent Mechanisms Of Multiscale Tendon Mechanics, Fei Fang

McKelvey School of Engineering Theses & Dissertations

Tendons serve as an integral part of the musculoskeletal system by transferring loads from muscle to bone and providing joint mobility and stability. From the physiologically-loading perspective, while progress has been made in evaluating mechanical behavior of different types of tendons in tension, further work is needed to relate tendon mechanics to compositional and microstructural properties, particularly under non-tensile loading modalities (i.e., shear, compression). This information is vital to explore mechanisms of how mechanical signals lead to changes in tendon structure and composition to enable these tissues to function properly, including in in vivo multiaxial loading conditions. From the structural …