Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Mathematics

Pure sciences

Publication Year

Articles 1 - 3 of 3

Full-Text Articles in Biomedical Engineering and Bioengineering

Modeling And Control Of Nanoparticle Bloodstream Concentration For Cancer Therapies, Scarlett S. Bracey Oct 2013

Modeling And Control Of Nanoparticle Bloodstream Concentration For Cancer Therapies, Scarlett S. Bracey

Doctoral Dissertations

Currently, the most commonly used treatments for cancerous tumors (chemotherapy, radiation, etc.) have almost no method of monitoring the administration of the treatment for adverse effects in real time. Without any real time feedback or control, treatment becomes a "guess and check" method with no way of predicting the effects of the drugs based on the actual bioavailability to the patient's body. One particular drug may be effective for one patient, yet provide no benefit to another. Doctors and scientists do not routinely attempt to quantifiably explain this discrepancy. In this work, mathematical modeling and analysis techniques are joined together …


A Numerical Method For Obtaining An Optimal Temperature Distribution In A 3d Triple-Layered Cylindrical Skin Structure, Le Zhang Apr 2005

A Numerical Method For Obtaining An Optimal Temperature Distribution In A 3d Triple-Layered Cylindrical Skin Structure, Le Zhang

Doctoral Dissertations

In recent years, it has been interesting to research hyperthermia combined with radiation and cytotoxic drugs to enhance the killing of tumors. The crucial problem is that when heating the tumor tissues, one needs to keep the surrounding normal tissue below a temperature that will produce harm. Thus, it is important to obtain the temperature field of the entire treatment region. The objective of this dissertation is to develop a numerical model for obtaining an optimal temperature distribution in a 3D triple-layered cylindrical skin structure. To this end, we pre-specify the temperatures to be obtained at the center and perimeter …


A High -Order Finite Difference Method For Solving Bioheat Transfer Equations In Three-Dimensional Triple -Layered Skin Structure, Haofeng Yu Jul 2004

A High -Order Finite Difference Method For Solving Bioheat Transfer Equations In Three-Dimensional Triple -Layered Skin Structure, Haofeng Yu

Doctoral Dissertations

Investigations on instantaneous skin burns are useful for an accurate assessment of burn-evaluation and for establishing thermal protections for various purposes. Meanwhile, hyperthermia with radiation is important in the treatment of cancer, and it is essential for developers and users of hyperthermia systems to predict, and interpret correctly the biomass thermal and vascular response to heating. In this dissertation, we employ the well-known Pennes' bioheat transfer equation to predict the degree of skin burn and the temperature distribution in hyperthermia cancer treatment.

A fourth-order compact finite difference scheme is developed to solve Pennes' bioheat transfer equation in a three-dimensional single …