Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Biomedical Engineering and Bioengineering

Mathematical Modeling For Dental Decay Prevention In Children And Adolescents, Mahdiyeh Soltaninejad Apr 2024

Mathematical Modeling For Dental Decay Prevention In Children And Adolescents, Mahdiyeh Soltaninejad

Dissertations

The high prevalence of dental caries among children and adolescents, especially those from lower socio-economic backgrounds, is a significant nationwide health concern. Early prevention, such as dental sealants and fluoride varnish (FV), is essential, but access to this care remains limited and disparate. In this research, a national dataset is utilized to assess sealants' reach and effectiveness in preventing tooth decay, particularly focusing on 2nd molars that emerge during early adolescence, a current gap in the knowledge base. FV is recommended to be delivered during medical well-child visits to children who are not seeing a dentist. Challenges and facilitators in …


Low Shear In Short-Term Impacts Endothelial Cell Traction And Alignment In Long-Term, Mohanish K. Chandurkar, Nikhil Mittal, Shaina P. Royer-Weeden, Steven D. Lehmann, Yeonwoo Rho, Sangyoon J. Han Feb 2024

Low Shear In Short-Term Impacts Endothelial Cell Traction And Alignment In Long-Term, Mohanish K. Chandurkar, Nikhil Mittal, Shaina P. Royer-Weeden, Steven D. Lehmann, Yeonwoo Rho, Sangyoon J. Han

Michigan Tech Publications, Part 2

Within the vascular system, endothelial cells (ECs) are exposed to fluid shear stress (FSS), a mechanical force exerted by blood flow that is critical for regulating cellular tension and maintaining vascular homeostasis. The way ECs react to FSS varies significantly; while high, laminar FSS supports vasodilation and suppresses inflammation, low or disturbed FSS can lead to endothelial dysfunction and increase the risk of cardiovascular diseases. Yet, the adaptation of ECs to dynamically varying FSS remains poorly understood. This study focuses on the dynamic responses of ECs to brief periods of low FSS, examining its impact on endothelial traction—a measure of …


Low Shear In Short-Term Impacts Endothelial Cell Traction And Alignment In Long-Term, Mohanish Chandurkar, Nikhil Mittal, Shaina P. Royer-Weeden, Steven D. Lehmann, Yeonwoo Rho, Sangyoon J. Han Feb 2024

Low Shear In Short-Term Impacts Endothelial Cell Traction And Alignment In Long-Term, Mohanish Chandurkar, Nikhil Mittal, Shaina P. Royer-Weeden, Steven D. Lehmann, Yeonwoo Rho, Sangyoon J. Han

Michigan Tech Publications, Part 2

Within the vascular system, endothelial cells (ECs) are exposed to fluid shear stress (FSS), a mechanical force exerted by blood flow that is critical for regulating cellular tension and maintaining vascular homeostasis. The way ECs react to FSS varies significantly; while high, laminar FSS supports vasodilation and suppresses inflammation, low or disturbed FSS can lead to endothelial dysfunction and increase the risk of cardiovascular diseases. Yet, the adaptation of ECs to dynamically varying FSS remains poorly understood. This study focuses on the dynamic responses of ECs to brief periods of low FSS, examining its impact on endothelial traction-a measure of …