Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Biomedical Engineering and Bioengineering

Experiments And Modeling Of The Chemo-Mechanically Coupled Behavior Of Polymeric Gels, Nikola Bosnjak Dec 2020

Experiments And Modeling Of The Chemo-Mechanically Coupled Behavior Of Polymeric Gels, Nikola Bosnjak

Dissertations

Polymeric materials consist of mutually entangled or chemically crosslinked long njitmolecular chains which form a polymer network. Due to their molecular structure, the njitpolymeric materials are known to undergo large deformation in response to various njitenvironmental stimuli, such as temperature, chemical potential and light.

When a polymer network is exposed to a suitable chemical solvent, the solvent molecules are able to diffuse inside the network, causing it to undergo a large volumetric deformation, known as swelling. In addition to volumetric deformation, this process involves the chemical mixing of the polymer network and solvent molecules, and is typically environmentally responsive. A …


Development Of Functional Materials And Devices On Flexible Platforms Using Additive Print Manufacturing Processes For Biomedical And Environmental Applications, Dinesh Maddipatla Dec 2020

Development Of Functional Materials And Devices On Flexible Platforms Using Additive Print Manufacturing Processes For Biomedical And Environmental Applications, Dinesh Maddipatla

Dissertations

In recent years, considerable research has been vested into the development of printed electronics (PE) to explore the best ways of fabricating electronic devices on flexible platforms using additive print manufacturing processes. PE produces flexible devices that are compatible with complex geometries, foldable applications and conformal to curved surfaces, with a promising potential for large‐area device fabrication at relatively lower manufacturing costs. This dissertation focuses majorly on the design and fabrication of novel flexible functional materials and devices for biomedical and environmental applications using additive printing processes.

Initially, a simple paper-based low cost and rapid prototypable platform with oxygen sensors …