Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Biomedical Engineering and Bioengineering

Making Sense Of Big (Kinematic) Data: A Comprehensive Analysis Of Movement Parameters In A Diverse Population, Naomi Wilma Nunis Jan 2023

Making Sense Of Big (Kinematic) Data: A Comprehensive Analysis Of Movement Parameters In A Diverse Population, Naomi Wilma Nunis

University of the Pacific Theses and Dissertations

OBJECTIVE

The purpose of this study was to determine how kinematic, big data can be evaluated using computational, comprehensive analysis of movement parameters in a diverse population.

METHODS

Retrospective data was collected, cleaned, and reviewed for further analysis of biomechanical movement in an active population using 3D collinear resistance loads. The active sample of the population involved in the study ranged from age 7 to 82 years old and respectively identified as active in 13 different sports. Moreover, a series of exercises were conducted by each participant across multiple sessions. Exercises were measured and recorded based on 6 distinct biometric …


Wheelchair Fatigue Reducer, Aaron Miller, Dennis Andre Norfleet May 2016

Wheelchair Fatigue Reducer, Aaron Miller, Dennis Andre Norfleet

Chancellor’s Honors Program Projects

No abstract provided.


Skeletal Muscle Contraction Simulation: A Comparison In Modeling, Jonathan M. Ford Nov 2013

Skeletal Muscle Contraction Simulation: A Comparison In Modeling, Jonathan M. Ford

USF Tampa Graduate Theses and Dissertations

Computer generated three-dimensional (3-D) models are being used at increasing rates in the fields of entertainment, education, research, and engineering. One of the aspects of interest includes the behavior and function of the musculoskeletal system. One such tool used by engineers is the finite element method (FEM) to simulate the physics behind muscle mechanics. There are several ways to represent 3-D muscle geometry, namely a bulk, a central line of action and a spline model. The purpose of this study is to exmine how these three representations affect the overall outcome of muscle movement. This is examined in a series …