Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Biomedical Engineering and Bioengineering

Developing And Characterizing A Novel Tempo Cnf Hydrogel Adjuvant And Delivery System For Aquatic Vaccines, Kora Kukk Aug 2022

Developing And Characterizing A Novel Tempo Cnf Hydrogel Adjuvant And Delivery System For Aquatic Vaccines, Kora Kukk

Electronic Theses and Dissertations

Aquaculture is a large part of the food production sector which is greatly expanding. One of the largest losses in aquaculture is due to pathogens. Current solutions for protecting farmed finfish from pathogens can be very expensive with variable efficiency. Current disease prevention strategies include vaccination. Types of vaccines include immersion vaccines, feed vaccines, and injectable vaccines. The most popular solution is oil-based injectable vaccines due to its protection. However, the oil-based adjuvant used in most of these formulations causes adverse reactions in the fish including reduced growth. These vaccines require multiple administrations throughout the fish’s lifetime causing unwanted handling …


Gradient Generating Microfluidic Coculture System For Disease Modeling And Neural Development, Phaneendra Chennampally Dec 2021

Gradient Generating Microfluidic Coculture System For Disease Modeling And Neural Development, Phaneendra Chennampally

Electronic Theses and Dissertations

Cellular microenvironment or cell niche plays an important role in developmental biology and disease pathophysiology. Physical or chemical signals in microenvironment drive the cellular activity. These signaling molecules are generated from the surrounding cells/tissues as part of intercellular communication; a fundamental property of a cell. Dynamic profile of these signaling molecules in the microenvironment plays a pivotal role in transfer of molecular information from cell to cell in disease proliferation or fate determination. Recapitulating these signaling cues in an in vitro study is difficult to achieve using standard cell culture techniques. However microfluidic systems are capable of addressing these issues, …


Development Of A Novel Haptic Feedback System For Gait Training Applications, Mohsen Alizadeh Noghani Aug 2021

Development Of A Novel Haptic Feedback System For Gait Training Applications, Mohsen Alizadeh Noghani

Electronic Theses and Dissertations

Until recently, study and correction of motor or gait functions required costly sensors and measurement setups (e.g., optical motion capture systems) which were only available in laboratories or clinical environments. However, due to (1) the growing availability and affordability of inertial measurement units (IMUs) with high accuracy, and (2) progress in wireless, high bandwidth, and energy-efficient networking technologies such as Bluetooth Low Energy (BLE), it is now possible to measure and provide feedback in real-time for biomechanical parameters outside of those specialized settings. To enable gait training without an expert who can provide verbal feedback, augmented feedback, which is divided …


Microengineering The Neural Tube, Christopher Demers Aug 2015

Microengineering The Neural Tube, Christopher Demers

Electronic Theses and Dissertations

Early embryonic development is a complex and highly regulated orchestra of instructive cues that collectively guide naïve stem cells towards progressively more specialized fates. In the neural tube, the precursor structure to the brain and spinal cord, these signals emanate from ‘organizing centers’ surrounding the neural tube. These organizing centers send out soluble cues or morphogens that diffuse tens to hundreds of microns to recipient cells residing in the neural tube. Re-creating this dynamic landscape of cues in vitro is impossible using standard cell culture tools and techniques. However, microfluidics is perfectly suited to fill this gap, allowing precise control …