Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Biomedical Engineering and Bioengineering

In Vivo Optical Metabolic Imaging Of Long-Chain Fatty Acid Uptake In Orthotopic Models Of Triple-Negative Breast Cancer, Megan C. Madonna, Joy E. Duer, Joyce V. Lee, Jeremy Williams, Baris Avsaroglu, Caigang Zhu, Riley Deutsch, Roujia Wang, Brian T. Crouch, Matthew D. Hirschey, Andrei Goga, Nirmala Ramanujam Jan 2021

In Vivo Optical Metabolic Imaging Of Long-Chain Fatty Acid Uptake In Orthotopic Models Of Triple-Negative Breast Cancer, Megan C. Madonna, Joy E. Duer, Joyce V. Lee, Jeremy Williams, Baris Avsaroglu, Caigang Zhu, Riley Deutsch, Roujia Wang, Brian T. Crouch, Matthew D. Hirschey, Andrei Goga, Nirmala Ramanujam

Biomedical Engineering Faculty Publications

Targeting a tumor’s metabolic dependencies is a clinically actionable therapeutic approach; however, identifying subtypes of tumors likely to respond remains difficult. The use of lipids as a nutrient source is of particular importance, especially in breast cancer. Imaging techniques offer the opportunity to quantify nutrient use in preclinical tumor models to guide development of new drugs that restrict uptake or utilization of these nutrients. We describe a fast and dynamic approach to image fatty acid uptake in vivo and demonstrate its relevance to study both tumor metabolic reprogramming directly, as well as the effectiveness of drugs targeting lipid metabolism. Specifically, …


Metabolomics Of Sorghum Roots During Nitrogen Stress Reveals Compromised Metabolic Capacity For Salicylic Acid Biosynthesis, Amy M. Sheflin, Dawn Chiniquy, Chaohui Yuan, Emily Goren, Indrajit Kumar, Max Braud, Thomas Brutnell, Andrea L. Eveland, Susannah Tringe, Peng Liu, Stephen Kresovich, Ellen Marsh, Daniel P. Schachtman, Jessica E. Prenni Feb 2019

Metabolomics Of Sorghum Roots During Nitrogen Stress Reveals Compromised Metabolic Capacity For Salicylic Acid Biosynthesis, Amy M. Sheflin, Dawn Chiniquy, Chaohui Yuan, Emily Goren, Indrajit Kumar, Max Braud, Thomas Brutnell, Andrea L. Eveland, Susannah Tringe, Peng Liu, Stephen Kresovich, Ellen Marsh, Daniel P. Schachtman, Jessica E. Prenni

Nebraska Center for Biotechnology: Faculty and Staff Publications

Sorghum (Sorghum bicolor [L.] Moench) is the fifth most productive cereal crop worldwide with some hybrids having high biomass yield traits making it promising for sustainable, economical biofuel production. To maximize biofuel feedstock yields, a more complete understanding of metabolic responses to low nitrogen (N) will be useful for incorporation in crop improvement efforts. In this study, 10 diverse sorghum entries (including inbreds and hybrids) were field-grown under low and full N conditions and roots were sampled at two time points for metabolomics and 16S amplicon sequencing. Roots of plants grown under low N showed altered metabolic profiles at …


Atypical Glycolysis In Clostridium Thermocellum, Jilai Zhou, Daniel G. Olson, D. Aaron Argyros, Yu Deng, Walter M. Van Gulik, Johannes P. Van Dijken, Lee R. Lynd Feb 2013

Atypical Glycolysis In Clostridium Thermocellum, Jilai Zhou, Daniel G. Olson, D. Aaron Argyros, Yu Deng, Walter M. Van Gulik, Johannes P. Van Dijken, Lee R. Lynd

Dartmouth Scholarship

Cofactor specificities of glycolytic enzymes in Clostridium thermocellum were studied with cellobiose-grown cells from batch cultures. Intracellular glucose was phosphorylated by glucokinase using GTP rather than ATP. Although phosphofructokinase typically uses ATP as a phosphoryl donor, we found only pyrophosphate (PPi)-linked activity. Phosphoglycerate kinase used both GDP and ADP as phosphoryl acceptors. In agreement with the absence of a pyruvate kinase sequence in the C. thermocellum genome, no activity of this enzyme could be detected. Also, the annotated pyruvate phosphate dikinase (ppdk) is not crucial for the generation of pyruvate from phosphoenolpyruvate (PEP), as deletion of the ppdk gene did …


Electroporation-Induced Electrosensitization, Olga N. Pakhomova, Betsy W. Gregory, Vera A. Khorokhorina, Anglela M. Bowman, Shu Xiao, Andrei G. Pakhomov Feb 2011

Electroporation-Induced Electrosensitization, Olga N. Pakhomova, Betsy W. Gregory, Vera A. Khorokhorina, Anglela M. Bowman, Shu Xiao, Andrei G. Pakhomov

Bioelectrics Publications

BACKGROUND: Electroporation is a method of disrupting the integrity of cell membrane by electric pulses (EPs). Electrical modeling is widely employed to explain and study electroporation, but even most advanced models show limited predictive power. No studies have accounted for the biological consequences of electroporation as a factor that alters the cell's susceptibility to forthcoming EPs.

METHODOLOGY/PRINCIPAL FINDINGS: We focused first on the role of EP rate for membrane permeabilization and lethal effects in mammalian cells. The rate was varied from 0.001 to 2,000 Hz while keeping other parameters constant (2 to 3,750 pulses of 60-ns to 9-micros duration, 1.8 …


Metabolic Engineering Of A Thermophilic Bacterium To Produce Ethanol At High Yield, A. Joe Shaw, Kara K. Podkaminer, Sunil G. Desai, John S. Bardsley, Stephen R. Rogers, Philip G. Thorne, David A. Hogsett, Lee R. Lynd Sep 2008

Metabolic Engineering Of A Thermophilic Bacterium To Produce Ethanol At High Yield, A. Joe Shaw, Kara K. Podkaminer, Sunil G. Desai, John S. Bardsley, Stephen R. Rogers, Philip G. Thorne, David A. Hogsett, Lee R. Lynd

Dartmouth Scholarship

We report engineering Thermoanaerobacterium saccharolyticum, a thermophilic anaerobic bacterium that ferments xylan and biomass-derived sugars, to produce ethanol at high yield. Knockout of genes involved in organic acid formation (acetate kinase, phosphate acetyltransferase, and L-lactate dehydrogenase) resulted in a strain able to produce ethanol as the only detectable organic product and substantial changes in electron flow relative to the wild type. Ethanol formation in the engineered strain (ALK2) utilizes pyruvate:ferredoxin oxidoreductase with electrons transferred from ferredoxin to NAD(P), a pathway different from that in previously described microbes with a homoethanol fermentation. The homoethanologenic phenotype was stable for >150 generations …


Cellulose Utilization By Clostridium Thermocellum: Bioenergetics And Hydrolysis Product Assimilation, Yi-Heng P. Zhang, Lee R. Lynd May 2005

Cellulose Utilization By Clostridium Thermocellum: Bioenergetics And Hydrolysis Product Assimilation, Yi-Heng P. Zhang, Lee R. Lynd

Dartmouth Scholarship

The bioenergetics of cellulose utilization by Clostridium thermocellum was investigated. Cell yield and maintenance parameters, Y(X/ATP)True = 16.44 g cell/mol ATP and m = 3.27 mmol ATP/g cell per hour, were obtained from cellobiose-grown chemostats, and it was shown that one ATP is required per glucan transported. Experimentally determined values for G(ATP)P-T (ATP from phosphorolytic beta-glucan cleavage minus ATP for substrate transport, mol ATP/mol hexose) from chemostats fed beta-glucans with degree of polymerization (DP) 2-6 agreed well with the predicted value of (n-2)/n [corrected] (n = mean cellodextrin DP assimilated). A mean G(ATP)(P-T) value of 0.52 +/- 0.06 was calculated …