Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Genetics

Old Dominion University

Electroporation

Articles 1 - 6 of 6

Full-Text Articles in Biomedical Engineering and Bioengineering

Electrotransfer Of Plasmid Dna Radiosensitizes B16f10 Tumors Through Activation Of Immune Response, Monika Savarin, Urska Kamensek, Maja Cemazar, Richard Heller, Gregor Sersa Jan 2017

Electrotransfer Of Plasmid Dna Radiosensitizes B16f10 Tumors Through Activation Of Immune Response, Monika Savarin, Urska Kamensek, Maja Cemazar, Richard Heller, Gregor Sersa

Bioelectrics Publications

Background. Tumor irradiation combined with adjuvant treatments, either vascular targeted or immunomodulatory, is under intense investigation. Gene electrotransfer of therapeutic genes is one of these approaches. The aim of this study was to determine, whether gene electrotransfer of plasmid encoding shRNA for silencing endoglin, with vascular targeted effectiveness, can radiosensitize melanoma B16F10 tumors.

Materials and methods. The murine melanoma Bl6F10 tumors, growing on the back of C57BI/6 mice, were treated by triple gene electrotransfer and irradiation. The antitumor effect was evaluated by determination of tumor growth delay and proportion of tumor free mice. Furthermore, histological analysis of tumors (necrosis, apoptosis, …


Electrotransfer Of Single-Stranded Or Double-Stranded Dna Induces Complete Regression Of Palpable B16.F10 Mouse Melanomas, Loree Heller, Vesba Todorovic, Maja Cemazar Dec 2013

Electrotransfer Of Single-Stranded Or Double-Stranded Dna Induces Complete Regression Of Palpable B16.F10 Mouse Melanomas, Loree Heller, Vesba Todorovic, Maja Cemazar

Bioelectrics Publications

Enhanced tumor delivery of plasmid DNA with electric pulses in vivo has been confirmed in many preclinical models. Intratumor electrotransfer of plasmids encoding therapeutic molecules has reached Phase II clinical trials. In multiple preclinical studies, a reduction in tumor growth, increased survival or complete tumor regression have been observed in control groups in which vector or backbone plasmid DNA electrotransfer was performed. This study explores factors that could produce this antitumor effect. The specific electrotransfer pulse protocol employed significantly potentiated the regression. Tumor regression was observed after delivery of single-stranded or double-stranded DNA with or without CpG motifs in both …


Electro-Gene Transfer To Skin Using A Noninvasive Multielectrode Array, Siqi Guo, Amy Donate, Gaurav Basu, Cathryn Lundberg, Loree Heller, Richard Heller Jan 2011

Electro-Gene Transfer To Skin Using A Noninvasive Multielectrode Array, Siqi Guo, Amy Donate, Gaurav Basu, Cathryn Lundberg, Loree Heller, Richard Heller

Bioelectrics Publications

Because of its large surface area and easy access for both delivery and monitoring, the skin is an attractive target for gene therapy for cutaneous diseases, vaccinations and several metabolic disorders. The critical factors for DNA delivery to the skin by electroporation (EP) are effective expression levels and minimal or no tissue damage. Here, we evaluated the non-invasive multielectrode array (MEA) for gene electrotransfer. For these studies we utilized a guinea pig model, which has been shown to have a similar thickness and structure to human skin. Our results demonstrate significantly increased gene expression 2 to 3 logs above injection …


Electrically Mediated Delivery Of Plasmid Dna To The Skin, Using A Multielectrode Array, Richard Heller, Yolmari Criz, Loree C. Heller, Richard A. Gilbert, Mark J. Jaroszeski Mar 2010

Electrically Mediated Delivery Of Plasmid Dna To The Skin, Using A Multielectrode Array, Richard Heller, Yolmari Criz, Loree C. Heller, Richard A. Gilbert, Mark J. Jaroszeski

Bioelectrics Publications

The easy accessibility of skin makes it an excellent target for gene transfer protocols. To take full advantage of skin as a target for gene transfer, it is important to establish an efficient and reproducible delivery system. Electroporation is a strong candidate to meet this delivery criterion. Electroporation of the skin is a simple, direct, in vivo method to deliver genes for therapy. Previously, delivery to the skin was performed by means of applicators with relatively large distances between electrodes, resulting in significant muscle stimulation and pain. These applicators also had limitations in controlling the directionality of the applied field. …


Electroporation-Mediated Delivery Of A Naked Dna Plasmid Expressing Vegf To The Porcine Heart Enhances Protein Expression, W. G. Marshall Jr., B. A. Boone, J. D. Burgos, S. I. Gografe, M. K. Baldwin, M. L. Danielson, M. J. Larson, D. R. Caretto, Y. Cruz, B. Ferraro, L. C. Heller, K. E. Ugen, M. J. Jaroszeski, R. Heller Jan 2010

Electroporation-Mediated Delivery Of A Naked Dna Plasmid Expressing Vegf To The Porcine Heart Enhances Protein Expression, W. G. Marshall Jr., B. A. Boone, J. D. Burgos, S. I. Gografe, M. K. Baldwin, M. L. Danielson, M. J. Larson, D. R. Caretto, Y. Cruz, B. Ferraro, L. C. Heller, K. E. Ugen, M. J. Jaroszeski, R. Heller

Bioelectrics Publications

Gene therapy is an attractive method for the treatment of cardiovascular disease. However, using current strategies, induction of gene expression at therapeutic levels is often inefficient. In this study, we show a novel electroporation (EP) method to enhance the delivery of a plasmid expressing an angiogenic growth factor (vascular endothelial growth factor, VEGF), which is a molecule previously documented to stimulate revascularization in coronary artery disease. DNA expression plasmids were delivered in vivo to the porcine heart with or without coadministered EP to determine the potential effect of electrically mediated delivery. The results showed that plasmid delivery through EP significantly …


Comparison Of Electrically Mediated And Liposome-Complexed Plasmid Dna Delivery To The Skin, Loree C. Heller, Mark J. Jaroszeski, Domenico Coppola, Richard Heller Dec 2008

Comparison Of Electrically Mediated And Liposome-Complexed Plasmid Dna Delivery To The Skin, Loree C. Heller, Mark J. Jaroszeski, Domenico Coppola, Richard Heller

Bioelectrics Publications

BACKGROUND: Electroporation is an established technique for enhancing plasmid delivery to many tissues in vivo, including the skin. We have previously demonstrated efficient delivery of plasmid DNA to the skin utilizing a custom-built four-plate electrode. The experiments described here further evaluate cutaneous plasmid delivery using in vivo electroporation. Plasmid expression levels are compared to those after liposome mediated delivery.

METHODS: Enhanced electrically-mediated delivery, and less extensively, liposome complexed delivery, of a plasmid encoding the reporter luciferase was tested in rodent skin. Expression kinetics and tissue damage were explored as well as testing in a second rodent model.

RESULTS: Experiments …