Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Biomedical Engineering and Bioengineering

Design And Fabrication Of A Force-Displacement Control Mechanism For Bone-Surgical Tool Testing, Kenneth Nwagu Jan 2023

Design And Fabrication Of A Force-Displacement Control Mechanism For Bone-Surgical Tool Testing, Kenneth Nwagu

Electronic Theses and Dissertations

This project focuses on the design and fabrication of an experimental setup for orthopedic-tool testing, tailored for a surgical instrumentation company. The multifaceted project encompasses a literature review, conceptual design, prototyping, and rigorous testing, resulting in a versatile control system capable of assessing various orthopedic tools, including bone drills, saws, burrs, and power handpieces.

Orthopedic surgical procedures (which include cutting and/or drilling into bone) often need to be performed on bones for faster recovery. The drilling and cutting process can cause an increase in temperature at the cutting site which can cause bone necrosis. The tools also need to be …


A Comprehensive Analysis On Eeg Signal Classification Using Advanced Computational Analysis, Kaushik Bhimraj Jan 2017

A Comprehensive Analysis On Eeg Signal Classification Using Advanced Computational Analysis, Kaushik Bhimraj

Electronic Theses and Dissertations

Electroencephalogram (EEG) has been used in a wide array of applications to study mental disorders. Due to its non-invasive and low-cost features, EEG has become a viable instrument in Brain-Computer Interfaces (BCI). These BCI systems integrate user's neural features with robotic machines to perform tasks. However, due to EEG signals being highly dynamic in nature, BCI systems are still unstable and prone to unanticipated noise interference. An important application of this technology is to help facilitate the lives of the tetraplegic through assimilating human brain impulses and converting them into mechanical motion. However, BCI systems are remarkably challenging to implement …


Assessment Of Optimized Electrode Configuration In Electrical Impedance Myography Study Using Genetic Algorithm Via Finite Element Model, Somen Baidya Jan 2016

Assessment Of Optimized Electrode Configuration In Electrical Impedance Myography Study Using Genetic Algorithm Via Finite Element Model, Somen Baidya

Electronic Theses and Dissertations

Electrical Impedance Myography (EIM) is a neurophysiologic technique in which high- frequency, low-intensity electrical current is applied via surface electrodes over a muscle or muscle group of interest and the resulting electrical parameters (resistance, reactance and phase) are analyzed to isolate diseased muscles from healthy ones. Beside muscle properties, some other anatomic and non-anatomic factors like muscle shape, subcutaneous fat (SF) thickness, inter-electrode distance, etc. also impact the major EIM parameters and thus affect the EIM analysis outcomes. The purpose of this study is to explore the effects of variation in some of these factors impose on EIM parameters and …


Assessment Of Electrode Configurations Of Electrical Impedance Myography For The Evaluation Of Neuromuscular Diseases, Khondokar Mohammad Fazle Rabbi Jan 2015

Assessment Of Electrode Configurations Of Electrical Impedance Myography For The Evaluation Of Neuromuscular Diseases, Khondokar Mohammad Fazle Rabbi

Electronic Theses and Dissertations

Electrical impedance myography (EIM) is a painless, noninvasive approach to measure the neuromuscular disease status. EIM parameters- resistance (R), reactance (X) and phase (θ) depend significantly on subcutaneous fat thickness, muscle size and inter electrode distance. The objective of this research is to find an electrode configuration which can minimize the effects on EIM parameters due to subcutaneous fat thickness variation. In this study, a model of human upper arm was developed using finite element method (FEM), which has already been established as an appropriate approach for the analysis of non-symmetrical shape for assessing alternations of muscle in disease-induced changes …


Neuromodulation Based Control Of Autonomous Robots On A Cloud Computing Platform, Cameron Muhammad Jan 2014

Neuromodulation Based Control Of Autonomous Robots On A Cloud Computing Platform, Cameron Muhammad

Electronic Theses and Dissertations

In recent years, the advancement of neurobiologically plausible models and computer networking has resulted in new ways of implementing control systems on robotic platforms. The work presents a control approach based on vertebrate neuromodulation and its implementation on autonomous robots in the open-source, open-access environment of robot operating system (ROS). A spiking neural network (SNN) is used to model the neuromodulatory function for generating context based behavioral responses of the robots to sensory input signals. The neural network incorporates three types of neurons- cholinergic and noradrenergic (ACh/NE) neurons for attention focusing and action selection, dopaminergic (DA) neurons for rewards- and …