Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Biomedical Engineering and Bioengineering

Brain Connectivity Networks For The Study Of Nonlinear Dynamics And Phase Synchrony In Epilepsy, Hoda Rajaei Oct 2018

Brain Connectivity Networks For The Study Of Nonlinear Dynamics And Phase Synchrony In Epilepsy, Hoda Rajaei

FIU Electronic Theses and Dissertations

Assessing complex brain activity as a function of the type of epilepsy and in the context of the 3D source of seizure onset remains a critical and challenging endeavor. In this dissertation, we tried to extract the attributes of the epileptic brain by looking at the modular interactions from scalp electroencephalography (EEG). A classification algorithm is proposed for the connectivity-based separation of interictal epileptic EEG from normal. Connectivity patterns of interictal epileptic discharges were investigated in different types of epilepsy, and the relation between patterns and the epileptogenic zone are also explored in focal epilepsy.

A nonlinear recurrence-based method is …


Optimization Of Cooling Protocols For Hearts Destined For Transplantation, Abas Abdoli Oct 2014

Optimization Of Cooling Protocols For Hearts Destined For Transplantation, Abas Abdoli

FIU Electronic Theses and Dissertations

Design and analysis of conceptually different cooling systems for the human heart preservation are numerically investigated. A heart cooling container with required connections was designed for a normal size human heart. A three-dimensional, high resolution human heart geometric model obtained from CT-angio data was used for simulations. Nine different cooling designs are introduced in this research. The first cooling design (Case 1) used a cooling gelatin only outside of the heart. In the second cooling design (Case 2), the internal parts of the heart were cooled via pumping a cooling liquid inside both the heart’s pulmonary and systemic circulation systems. …


Bionano Electronics: Magneto-Electric Nanoparticles For Drug Delivery, Brain Stimulation And Imaging Applications, Rakesh Guduru Sep 2013

Bionano Electronics: Magneto-Electric Nanoparticles For Drug Delivery, Brain Stimulation And Imaging Applications, Rakesh Guduru

FIU Electronic Theses and Dissertations

Nanoparticles are often considered as efficient drug delivery vehicles for precisely dispensing the therapeutic payloads specifically to the diseased sites in the patient’s body, thereby minimizing the toxic side effects of the payloads on the healthy tissue. However, the fundamental physics that underlies the nanoparticles’ intrinsic interaction with the surrounding cells is inadequately elucidated. The ability of the nanoparticles to precisely control the release of its payloads externally (on-demand) without depending on the physiological conditions of the target sites has the potential to enable patient- and disease-specific nanomedicine, also known as Personalized NanoMedicine (PNM). In this dissertation, magneto-electric nanoparticles (MENs) …