Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Biomedical Engineering and Bioengineering

Estimating Cognitive Workload In An Interactive Virtual Reality Environment Using Eeg, Christoph Tremmel, Christain Herff, Tetsuya Sato, Krzysztof Rechowicz, Yusuke Yamani, Dean J. Krusienski Nov 2019

Estimating Cognitive Workload In An Interactive Virtual Reality Environment Using Eeg, Christoph Tremmel, Christain Herff, Tetsuya Sato, Krzysztof Rechowicz, Yusuke Yamani, Dean J. Krusienski

Electrical & Computer Engineering Faculty Publications

With the recent surge of affordable, high-performance virtual reality (VR) headsets, there is unlimited potential for applications ranging from education, to training, to entertainment, to fitness and beyond. As these interfaces continue to evolve, passive user-state monitoring can play a key role in expanding the immersive VR experience, and tracking activity for user well-being. By recording physiological signals such as the electroencephalogram (EEG) during use of a VR device, the user's interactions in the virtual environment could be adapted in real-time based on the user's cognitive state. Current VR headsets provide a logical, convenient, and unobtrusive framework for mounting EEG …


Estimating Cognitive Workload In An Interactive Virtual Reality Environment Using Electrophysiological And Kinematic Activity, Christoph Tremmel Apr 2019

Estimating Cognitive Workload In An Interactive Virtual Reality Environment Using Electrophysiological And Kinematic Activity, Christoph Tremmel

Biomedical Engineering Theses & Dissertations

As virtual reality (VR) technology continues to gain prominence in commercial, educational, recreational and research applications, there is increasing interest in incorporating physiological sensors in VR devices for passive user-state monitoring to eventually increase the sense of immersion. By recording physiological signals such as the electroencephalogram (EEG), electromyography (EMG) or kinematic parameters during the use of a VR device, the user’s interactions in the virtual environment could be adapted in real time based on the user’s cognitive state. This dissertation evaluates the feasibility of passively monitoring cognitive workload via electrophysiological and kinematic activity while performing a classical n-back task in …