Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 9 of 9

Full-Text Articles in Biomedical Engineering and Bioengineering

The Conversion Of Low-Grade Heat Into Power Using Supercritical Rankine Cycles, Huijuan Chen Nov 2010

The Conversion Of Low-Grade Heat Into Power Using Supercritical Rankine Cycles, Huijuan Chen

USF Tampa Graduate Theses and Dissertations

Low-grade heat sources, here defined as below 300 ºC, are abundantly available as industrial waste heat, solar thermal, and geothermal, to name a few. However, they are under-exploited for conversion to power because of the low efficiency of conversion. The utilization of low-grade heat is advantageous for many reasons. Technologies that allow the efficient conversion of low-grade heat into mechanical or electrical power are very important to develop.

This work investigates the potential of supercritical Rankine cycles in the conversion of low-grade heat into power. The performance of supercritical Rankine cycles is studied using ChemCAD linked with customized excel macros …


Plasma Mediated Molecular Delivery, Richard J. Connolly Oct 2010

Plasma Mediated Molecular Delivery, Richard J. Connolly

USF Tampa Graduate Theses and Dissertations

Non-viral delivery of plasmid DNA has traditionally relied upon physical forces applied directly to target tissues. These physical methods typically involve contact between an applicator and the target tissue and often cause transient patient discomfort. To overcome the contact-dependent limitations of such delivery methodologies, an atmospheric direct current plasma source was developed to deposit ionized gas molecules onto localized treatment sites. The deposition of charged species onto a treatment site can lead to the establishment of an electric field with strengths similar to those used for traditional electroporation. In vitro experiments proved that this technology could transiently permeabilize cell membranes …


The Virtual Hip: An Anatomically Accurate Finite Element Model Based On The Visible Human Dataset, Jonathan M. Ford Oct 2010

The Virtual Hip: An Anatomically Accurate Finite Element Model Based On The Visible Human Dataset, Jonathan M. Ford

USF Tampa Graduate Theses and Dissertations

The purpose of this study is to determine if element decimation of a 3-D anatomical model affects the results of Finite Element Analysis (FEA). FEA has been increasingly applied to the biological and medical sciences. In order for an anatomical model to successfully run in FEA, the 3-D model’s complex geometry must be simplified, resulting in a loss of anatomical detail. The process of decimation reduces the number of elements within the structure and creates a simpler approximation of the model. Using the National Library of Medicine’s Visible Human Male dataset, a virtual 3-D representation of several structures of the …


Investigation Of Buildup Dose For Therapeutic Intensity Modulated Photon Beams In Radiation Therapy, Khosrow Javedan Jul 2010

Investigation Of Buildup Dose For Therapeutic Intensity Modulated Photon Beams In Radiation Therapy, Khosrow Javedan

USF Tampa Graduate Theses and Dissertations

Buildup dose of Mega Voltage (MV) photon beams can be a limiting factor in intensitymodulated radiation therapy (IMRT) treatments. Excessive doses can cause patient discomfort and treatment interruptions, while underdosing may lead to local failure.

Many factors which contribute to buildup dose, including the photon beam energy spectrum, scattered or contaminant radiation and their angular distribution, are not modeled well in commercial treatment planning systems. The accurate Monte Carlo method was employed in the studies to estimate the doses.

Buildup dose of 6MV photon beams was investigated for three fundamentally different IMRT modalities: between Helical TomoTherapy and traditional opposed tangential …


Synthesis, Characterization, And Self-Assembly Of Gold Nanorods And Nanoprisms, Kristina L. Tran Jun 2010

Synthesis, Characterization, And Self-Assembly Of Gold Nanorods And Nanoprisms, Kristina L. Tran

USF Tampa Graduate Theses and Dissertations

The unique properties of gold nanoparticles make them excellent candidates for applications in electronics, sensing, imaging, and photothermal therapy. Though abundant literature exists for isotropic gold nanoparticles, work on nanoparticles of different shapes has been gaining interest recently. Anisotropic gold nanoparticles, such as nanorods and nanoprisms, have tunable optical properties in the visible and near-infrared regions. Through synthesis and surface modification, the production of various shapes of these gold nanoparticles can be controlled to meet different applications.

Two different types of gold nanorods were used in this thesis. The first type was stabilized with cetyltrimethylammonium bromide (CTAB) and had aspect …


Effects Of Monoclonal Anti-Abeta Antibodies On The Amyloid Beta Peptide Fibrillogenesis And Their Involvement In The Clearance Of Alzheimer's Disease Plaques, Jeffy Pilar Jimenez May 2010

Effects Of Monoclonal Anti-Abeta Antibodies On The Amyloid Beta Peptide Fibrillogenesis And Their Involvement In The Clearance Of Alzheimer's Disease Plaques, Jeffy Pilar Jimenez

USF Tampa Graduate Theses and Dissertations

Alzheimer’s disease (AD) is the most common cause of senile dementia worldwide. AD is a neurodegenerative disorder characterized by the loss of memory and language skill, collapse of the cognitive function, and distortion of social behavior. As of today, the onset mechanisms of AD and cure are unknown; however, three hallmarks are commonly encountered: extra and intracellular accumulation of amyloid beta (A!) peptide plaques, formation of intracellular neurofibrillary tangles, and inevitable neuronal death. Hypothetically, a possible scenario provoking or involved in the onset of AD is a cascade effect that starts with an imbalance in the production and clearance of …


Comparative Studies On Oxygen Mass Transfer For The Design And Development Of A Single-Use Fermentor, Kristan L. Sorenson May 2010

Comparative Studies On Oxygen Mass Transfer For The Design And Development Of A Single-Use Fermentor, Kristan L. Sorenson

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

Accurate experimental oxygen mass transfer coefficient, a measure of how quickly oxygen travels from a gas bubble to the bulk liquid, is important for comparing performance and for evaluating the oxygen transfer capability of a fermentor. Delays in probe response and changing gas volumes upon start-up of gassing affect the accuracy of oxygen transfer measurements. To mitigate these inaccuracies, a standard correction procedure for oxygen mass transfer data was established for highly oxygenated, well-mixed fermentation systems. Probe response time correction was generated by applying a second-order response model to dissolved oxygen probes and shown to be effective within 4%. By …


Synthesis And Characterization Of Magnetic Hydrogel Nanocomposites For Cancer Therapy Applications, Samantha Ann Meenach Jan 2010

Synthesis And Characterization Of Magnetic Hydrogel Nanocomposites For Cancer Therapy Applications, Samantha Ann Meenach

University of Kentucky Doctoral Dissertations

Currently, cancer is the second leading cause of death in the United States. Conventional cancer treatment includes chemotherapy, radiation, and surgical resection, but unfortunately, all of these methods have significant drawbacks. Hyperthermia, the heating of cancerous tissues to between 41 and 45°C, has been shown to improve the efficacy of cancer therapy when used in conjunction with irradiation and/or chemotherapy. In this work, a novel method for remotely administering heat is presented. This method involves heating of tumor tissue using hydrogel nanocomposites containing magnetic nanoparticles which can be remotely heated upon exposure to an external alternating magnetic field (AMF). The …


Applications Of Ultrafine Powder Coatings, A.S. Mohammad Sayem Mozumder Jan 2010

Applications Of Ultrafine Powder Coatings, A.S. Mohammad Sayem Mozumder

Digitized Theses

Powder coatings have emerged as an alternative to the conventional liquid coatings when environmental regulations become stricter every year. The advantage of powder coatings mainly renders to their solvent-free formulations, because solvent(s) used in liquid coatings are to be evaporated to environment contributing to the total volatile organic compounds (VOCs) emissions. Although advantageous, until recently, powder coating was not able to provide surface finishes comparable to the liquid coatings. However, when ultrafine powders (particularly, in the size range of 15-25 µm) becomes flowable with the aid of nano-additive(s), ultrafine powder coatings (UPCs) came into business with its thinner and smoother …