Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Biomedical Engineering and Bioengineering

Investigating Cyanobacteria Metabolism And Channeling-Based Regulations Via Isotopic Nonstationary Labeling And Metabolomic Analyses, Mary Helen Abernathy Dec 2018

Investigating Cyanobacteria Metabolism And Channeling-Based Regulations Via Isotopic Nonstationary Labeling And Metabolomic Analyses, Mary Helen Abernathy

McKelvey School of Engineering Theses & Dissertations

Cyanobacteria have the potential to be low-cost and sustainable cell factories for bio-products; however, many challenges face cyanobacteria as biorefineries. This dissertation seeks to advance non-model photosynthetic organisms for biotechnology applications by characterizing central carbon metabolism and its regulations. Cyanobacteria phenotypes for bio-production are examined and their intracellular metabolism is quantified. Using isotopic labeling experiments, phenotypic relationships between biomass composition, central carbon fluxes, and metabolite pool sizes are investigated. Metabolic analyses of cyanobacteria led to new investigations of flux regulation mechanisms via protein spatial organizations or metabolite channeling. Metabolite channeling is further explored as a hypothesis to explain enigmatic labeling …


Engineering Robust And Programmable Biological Systems, Tatenda Shopera Aug 2018

Engineering Robust And Programmable Biological Systems, Tatenda Shopera

McKelvey School of Engineering Theses & Dissertations

The ability to engineer programmable biological systems using complex artificial gene networks has great potential to unlock important innovative solutions to many biotechnological challenges. While cells have been engineered to implement complex information processing algorithms and to produce food, materials, and pharmaceuticals, many innovative applications are yet to be realized due to our poor understanding of how robust, reliable, and predictable artificial gene circuits are built. In this work, we demonstrate that robust complex cellular behaviors (e.g., bistability and gene expression dynamics) can be achieved by engineering gene regulatory architecture and increasing the complexity of genetic networks. We further demonstrate …