Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Biomedical Engineering and Bioengineering

Mimicking The Arterial Microenvironment With Peg-Pc To Investigate The Roles Of Physicochemical Stimuli In Smc Phenotype And Behavior, William G. Herrick Aug 2015

Mimicking The Arterial Microenvironment With Peg-Pc To Investigate The Roles Of Physicochemical Stimuli In Smc Phenotype And Behavior, William G. Herrick

Doctoral Dissertations

The goal of this dissertation was to parse the roles of physical, mechanical and chemical cues in the phenotype plasticity of smooth muscle cells (SMCs) in atherosclerosis. We first developed and characterized a novel synthetic hydrogel with desirable traits for studying mechanotransduction in vitro. This hydrogel, PEG-PC, is a co-polymer of poly(ethylene glycol) and phosphorylcholine with an incredible range of Young’s moduli (~1 kPa - 9 MPa) that enables reproduction of nearly any tissue stiffness, exceptional optical and anti-fouling properties, and support for covalent attachment of extracellular matrix (ECM) proteins. To our knowledge, this combination of mechanical range, low …


Diamond Mems Biosensors: Development And Applications, Wenli Zhang Jul 2015

Diamond Mems Biosensors: Development And Applications, Wenli Zhang

Doctoral Dissertations

This research focuses on the development a dielectrophoresis-enhanced microfluidic impedance biosensor (DEP-e-MIB) to enable fast response, real-time, label-free, and highly sensitive sensor for bacterial detection in clinical sample. The proposed design consists of application of dielectrophoresis (DEP) across a microfluidic channel to one of the impedance spectroscopy electrodes in order to improve the existent bacterial detection limits with impedance spectroscopy. In order to realize such a design, choice of electrode material with a wide electrochemical potential window for water is very important. Conventional electrode material, such as gold, are typically insulated for the application of DEP, and they fail when …


Gold Nanoparticle Enhancements In Electroporation Mediated Dna And Rna Therapeutics, Shuyan Huang Jul 2015

Gold Nanoparticle Enhancements In Electroporation Mediated Dna And Rna Therapeutics, Shuyan Huang

Doctoral Dissertations

Nonviral gene delivery methods have been explored as the replacement of viral systems for their low toxicity and immunogenicity. However, they have yet to reach levels competitive to their viral counterparts. Electroporation figured prominently as an effective nonviral gene delivery approach for its balance on the transfection efficiency and cell viability, no restrictions of probe or cell type, and operation simplicity. The commercial electroporation systems have been widely adopted in the past two decades but still carry drawbacks associated with the high applied electric voltage, unsatisfied delivery efficiency, and/or low cell viability. What we did was to improve electroporation performance …


Cell Adhesion Biophysics On Dynamic Polymer Constructs, Andreas Kourouklis Mar 2015

Cell Adhesion Biophysics On Dynamic Polymer Constructs, Andreas Kourouklis

Doctoral Dissertations

The biophysical characteristics of cell adhesion from single protein to cell length scales have primarily been studied using purely elastic substrates. However, natural extracellular matrix (ECM) is viscoelastic and contains mobile components. In this work, we combined chemistry and cell biology tools to design and characterize laterally mobile viscoelastic polymer films that promote receptor-specific cell adhesion. Moreover, we used amphiphilic block copolymers that are end-labeled with RGD peptide ligands to allow for integrin-mediated cell adhesion. The addition of a trace hydrophobic homopolymer in the supported bilayer block-copolymer films is used to tune the lateral mobility of the films. NIH 3T3 …