Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Cell and Developmental Biology

Old Dominion University

NsPEF

Articles 1 - 3 of 3

Full-Text Articles in Biomedical Engineering and Bioengineering

Pulsed Electric Fields Sensitize Methicillin-Resistant Staphylococcus Aureus To Antibacterial Therapies And Stimulate Host Immune Responses, Alexandra E. Chittams-Miles Apr 2024

Pulsed Electric Fields Sensitize Methicillin-Resistant Staphylococcus Aureus To Antibacterial Therapies And Stimulate Host Immune Responses, Alexandra E. Chittams-Miles

Biomedical Sciences Theses & Dissertations

This research explores the impact of nanosecond pulsed electric fields (nsPEF) on two fronts: their immune stimulatory effects and their potential as a novel strategy to enhance the sensitivity of Methicillin-resistant Staphylococcus aureus (MRSA) to clinically relevant antibiotics. While pulsed electric fields have been reported to have an immune stimulatory effect, the mechanisms responsible for these effects have yet to be determined.

Our investigation addresses the rising concern of MRSA derived skin and soft tissue infections (SSTIs). Consistent with other publications, we found that nsPEF alone cause modest inactivation of planktonic MRSA. We then investigated the effects of nsPEF in …


Identification Of Proteins Involved In Cell Membrane Permeabilization By Nanosecond Electric Pulses (Nsep), Giedre Silkuniene, Uma Mangalanathan, Alessandra Rossi, Peter A. Mollica, Andrei G. Pakhomov, Olga N. Pakhomova Jan 2023

Identification Of Proteins Involved In Cell Membrane Permeabilization By Nanosecond Electric Pulses (Nsep), Giedre Silkuniene, Uma Mangalanathan, Alessandra Rossi, Peter A. Mollica, Andrei G. Pakhomov, Olga N. Pakhomova

Bioelectrics Publications

The study was aimed at identifying endogenous proteins which assist or impede the permeabilized state in the cell membrane disrupted by nsEP (20 or 40 pulses, 300 ns width, 7 kV/cm). We employed a LentiArray CRISPR library to generate knockouts (KOs) of 316 genes encoding for membrane proteins in U937 human monocytes stably expressing Cas9 nuclease. The extent of membrane permeabilization by nsEP was measured by the uptake of Yo-Pro-1 (YP) dye and compared to sham-exposed KOs and control cells transduced with a non-targeting (scrambled) gRNA. Only two KOs, for SCNN1A and CLCA1 genes, showed a statistically significant reduction in …


Enhanced Killing Effect Of Nanosecond Pulse Electric Fields On Panc1 And Jurkat Cell Lines In The Presence Of Tween 80, Gaurav Basu, Bhargava Subhash Kalluri, Ahmet Can Sabuncu, Christopher J. Osgood, Michael W. Stacey Jan 2012

Enhanced Killing Effect Of Nanosecond Pulse Electric Fields On Panc1 And Jurkat Cell Lines In The Presence Of Tween 80, Gaurav Basu, Bhargava Subhash Kalluri, Ahmet Can Sabuncu, Christopher J. Osgood, Michael W. Stacey

Bioelectrics Publications

We investigated the effects of nanosecond pulse electric fields (nsPEFs) on Jurkat and PANC1 cells, which are human carcinoma cell lines, in the presence of Tween 80 (T80) at a concentration of 0.18% and demonstarted an enhanced killing effect. We used two biological assays to determine cell viability after exposing cells to nsPEFs in the presence of T80 and observed a significant increase in the killing effect of nsPEFs. We did not see a toxic effect of T80 when cells were exposed to surfactant alone. However, we saw a synergistic effect when cells exposed to T80 were combined with the …