Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Biomedical Engineering and Bioengineering

Producing And Measuring Oscillatory Shear In A Novel Microfluidic Chip, Sanaz Lordfard, Daniel Lorusso, Tamie L. Poepping, Hristo N Nikolov, Kayla Soon, Stephen Sims, Jeffrey Dixon, David Holdsworth Aug 2022

Producing And Measuring Oscillatory Shear In A Novel Microfluidic Chip, Sanaz Lordfard, Daniel Lorusso, Tamie L. Poepping, Hristo N Nikolov, Kayla Soon, Stephen Sims, Jeffrey Dixon, David Holdsworth

Undergraduate Student Research Internships Conference

Purpose: To demonstrate the effectiveness of a novel microfluidic device mimicking oscillatory blood flow, allowing cell biologists to examine how endothelial cells respond to a range of oscillatory shear stress levels.

Methods: The microfluidic chip consists of a circular-shaped reservoir, leading to a rectangular channel that is examined under a microscope. The plunger is connected to a speaker system and oscilloscope, allowing the plunger to apply a range of frequencies (5-60Hz) and voltages (5-10 V, leading to a variety in oscillation amplitudes) to the reservoir region. 1.1 um fluorescent particles diluted in distilled water were used for tracking. Processing was …


Extracellular Matrix-Derived Modular Bioscaffolds For Soft Connective Tissue Regeneration, Pascal Morissette Martin Feb 2020

Extracellular Matrix-Derived Modular Bioscaffolds For Soft Connective Tissue Regeneration, Pascal Morissette Martin

Electronic Thesis and Dissertation Repository

Human decellularized adipose tissue (DAT) represents a promising extracellular matrix (ECM) source for the development of biomaterials, with its properties conductive of angiogenesis, adipogenesis, and scaffold remodelling. This thesis sought to provide new fundamental insight into the design of ECM-derived bioscaffolds by developing novel modular biomaterials for soft connective tissue regeneration and by studying the effects of ECM composition on cell function and fate.

Initial studies explored the effects of ECM composition of pre-assembled bead foams derived from DAT or commercially-sourced bovine collagen (COL) on human wound edge dermal fibroblasts (weDFs) sourced from chronic wounds. In vitro testing under conditions …


Formation Of A Vascular Regenerative Microenvironment Within Implantable Human Decellularized Adipose Tissue Bioscaffolds, Christopher Leclerc Sep 2019

Formation Of A Vascular Regenerative Microenvironment Within Implantable Human Decellularized Adipose Tissue Bioscaffolds, Christopher Leclerc

Electronic Thesis and Dissertation Repository

Cellular therapies targeted at stimulating therapeutic angiogenesis in individuals with critical limb ischemia (CLI) have been under intense investigation. Hematopoietic progenitor cells (HPC) derived from umbilical cord blood have been previously shown to support limb revascularization in animal models of CLI, despite limited cell survival at the site of ischemia. This study attempted to improve HPC survival after transplantation and prolong pro-angiogenic function using human decellularized adipose tissue (hDAT) as a novel cell delivery platform. Compared to HPC conventionally grown on tissue-cultured plastic, hDAT scaffolds were shown to promote viability and proliferation of seeded HPC, and had cell- instructive effects …


Investigation Of Chitosan-Based Hydrogels As A Cell Delivery Platform For Adipose-Derived Stem/Stromal Cell Transplantation To Promote Angiogenesis In Ischemic Tissues, Jobanpreet Singh Dhillon Mar 2017

Investigation Of Chitosan-Based Hydrogels As A Cell Delivery Platform For Adipose-Derived Stem/Stromal Cell Transplantation To Promote Angiogenesis In Ischemic Tissues, Jobanpreet Singh Dhillon

Electronic Thesis and Dissertation Repository

Stem cell transplantation is under investigation to stimulate angiogenesis in patients with peripheral artery disease. To develop a cell-delivery platform that enhances cell retention and function post-transplantation, the response of human adipose-derived stem/stromal cells (ASCs) encapsulated within N-methacrylate glycol chitosan (MGC) hydrogels with or without integrin-binding RGD or IKVAV motifs was explored. ASC viability was enhanced in the MGC and MGC-RGD hydrogels relative to the MGC-IKVAV group under hypoxic (2% O­2) culture conditions, with cell spreading and higher metabolic activity noted in MGC-RGD at 14 days. Analysis of angiogenic gene expression revealed similar patterns between all hydrogel …


The Role Of Bone Sialoprotein In Periodontal Tissue Development And Bone Repair, Yohannes Soenjaya Dec 2015

The Role Of Bone Sialoprotein In Periodontal Tissue Development And Bone Repair, Yohannes Soenjaya

Electronic Thesis and Dissertation Repository

Bone development and repair involve complex processes that include interaction between cells and their surrounding matrix. In the body, bone sialoprotein (BSP) expression is up-regulated at the onset of mineralization. BSP is a multifunctional acidic phosphoprotein with collagen-binding, hydroxyapatite nucleating, and integrin recognition (RGD sequence, which is important for cell-attachment and signaling) regions. Mice lacking BSP expression (Bsp-/-), exhibit a bone phenotype with reductions in bone mineral density, bone length, osteoclast activation, and impaired bone healing. This thesis examined the role of BSP in tooth development and also its potential use as a therapeutic reagent for bone …


Use Of Imaging Biomarkers To Assess Perfusion And Glucose Metabolism In The Skeletal Muscle Of Dystrophic Mice, Nabeel Ahmad, Ian Welch, Robert Grange, Jennifer Hadway, Savita Dhanvantari, David Hill, Ting-Yim Lee, Lisa M Hoffman Jun 2011

Use Of Imaging Biomarkers To Assess Perfusion And Glucose Metabolism In The Skeletal Muscle Of Dystrophic Mice, Nabeel Ahmad, Ian Welch, Robert Grange, Jennifer Hadway, Savita Dhanvantari, David Hill, Ting-Yim Lee, Lisa M Hoffman

Robarts Imaging Publications

BACKGROUND: Duchenne muscular dystrophy (DMD) is a severe neuromuscular disease that affects 1 in 3500 boys. The disease is characterized by progressive muscle degeneration that results from mutations in or loss of the cytoskeletal protein, dystrophin, from the glycoprotein membrane complex, thus increasing the susceptibility of contractile muscle to injury. To date, disease progression is typically assessed using invasive techniques such as muscle biopsies, and while there are recent reports of the use of magnetic resonance, ultrasound and optical imaging technologies to address the issue of disease progression and monitoring therapeutic intervention in dystrophic mice, our study aims to validate …