Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Biomedical Engineering and Bioengineering

Characterization Of Nano-Cellulose Based Composites For Biomedical Applications, Mitchell P. Chesley Aug 2019

Characterization Of Nano-Cellulose Based Composites For Biomedical Applications, Mitchell P. Chesley

Electronic Theses and Dissertations

The number of orthopedic surgeries performed globally has steadily increased over the past decade due to the standardization of procedures as well as technological advancements. During this time orthopedic devices have been composed predominantly of metals, such as Titanium, Vanadium, Molybdenum, and Stainless steel, as well as their alloys, due to the high strength and durability of these materials. However, metals may, in fact, be suboptimal for orthopedic devices. For example, metals exhibit Young’s modulus much greater than the surrounding bone, inducing localized stress-shielding promoting cortical atrophy, which can lead to osteoporosis. In recent years polymers have been successfully explored …


Suture-Less Trocar Site Closure Clip, Hares A. Patel Apr 2019

Suture-Less Trocar Site Closure Clip, Hares A. Patel

Electronic Theses and Dissertations

Introduction: Following laparoscopic surgery, there is a need, in many cases, to close trocar sites to prevent hernias. Currently, devices that exist on the market are suture based, but the lack of standardization in the suturing techniques together with the time-consuming nature of the procedure leads to the need for improvement in trocar site closure products. Trocar closure sites do not need to be fully closed on the fascial layer; rather, sufficiently blocking the hole at the abdominal wall can significantly reduce post-operative herniation. A retrospective study on trocar site herniation (TSH) after laparoscopic surgery indicates a TSH incidence …


Development Of An Impedance-Controlled Hot Snare Polypectomy Device To Minimize Tissue Damage, Curtislee Thornton Jan 2019

Development Of An Impedance-Controlled Hot Snare Polypectomy Device To Minimize Tissue Damage, Curtislee Thornton

Electronic Theses and Dissertations

This study explores the ability to measure the changing impedance, ex vivo, of a porcine colon sample while undergoing a high-frequency alternating current from an Olympus PSD-30 electrosurgical unit and stop the applied current before excessive tissue damage ensues. The causes of the thermal damage are first examined, followed by the construction and testing of the impedance-controlled feedback device. Perforation was observed to occur when the impedance of the tissue sample increased by 25% or more. Using this information, the device was tested for five power settings ranging from 10W-50W. In each trial, the feedback device stopped the applied current …