Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Biomedical Engineering and Bioengineering

Expanded 3d Nanofiber Scaffolds: Cell Penetration, Neovascularization, And Host Response, Jiang Jiang, Zhuoran Li, Hongjun Wang, Yue Wang, Mark A. Carlson, Matthew J. Teusink, Matthew R. Macewan, Linxia Gu, Jingwei Xie Jan 2016

Expanded 3d Nanofiber Scaffolds: Cell Penetration, Neovascularization, And Host Response, Jiang Jiang, Zhuoran Li, Hongjun Wang, Yue Wang, Mark A. Carlson, Matthew J. Teusink, Matthew R. Macewan, Linxia Gu, Jingwei Xie

Department of Mechanical and Materials Engineering: Faculty Publications

Herein, a robust method to fabricate expanded nanofiber scaffolds with controlled size and thickness using a customized mold during the modified gas-foaming process is reported. The expansion of nanofiber membranes is also simulated using a computational fluid model. Expanded nanofiber scaffolds implanted subcutaneously in rats show cellular infiltration, whereas non-expanded scaffolds only have surface cellular attachment. Compared to unexpanded nanofiber scaffolds, more CD68+ and CD163+ cells are observed within expanded scaffolds at all tested time points post-implantation. More CCR7+ cells appear within expanded scaffolds at week 8 post-implantation. In addition, new blood vessels are present within the expanded scaffolds at …


Implementation And Validation Of Aortic Remodeling In Hypertensive Rats, Shijia Zhao, Linxia Gu Sep 2014

Implementation And Validation Of Aortic Remodeling In Hypertensive Rats, Shijia Zhao, Linxia Gu

Department of Mechanical and Materials Engineering: Faculty Publications

A computational framework was implemented and validated to better understand the hypertensive artery remodeling in both geometric dimensions and material properties. Integrating the stress-modulated remodeling equations into commercial finite element codes allows a better control and visualization of local mechanical parameters. Both arterial thickening and stiffening effects were captured and visualized. An adaptive material remodeling strategy combined with the element birth and death techniques for the geometrical growth were implemented. The numerically predicted remodeling results in terms of the wall thickness, inner diameter, and the ratio of elastin to collagen content of the artery were compared with and fine-tuned by …


Implementation And Validation Of Aortic Remodeling In Hypertensive Rats, Shijia Zhao, Linxia Gu Sep 2014

Implementation And Validation Of Aortic Remodeling In Hypertensive Rats, Shijia Zhao, Linxia Gu

Department of Mechanical and Materials Engineering: Faculty Publications

A computational framework was implemented and validated to better understand the hypertensive artery remodeling in both geometric dimensions and material properties. Integrating the stress-modulated remodeling equations into commercial finite element codes allows a better control and visualization of local mechanical parameters. Both arterial thickening and stiffening effects were captured and visualized. An adaptive material remodeling strategy combined with the element birth and death techniques for the geometrical growth were implemented. The numerically predicted remodeling results in terms of the wall thickness, inner diameter, and the ratio of elastin to collagen content of the artery were compared with and fine-tuned by …


On The Importance Of Modeling Stent Procedure For Predicting Arterial Mechanics, Shijia Zhao, Linxia Gu, Stacey R. Froemming Dec 2012

On The Importance Of Modeling Stent Procedure For Predicting Arterial Mechanics, Shijia Zhao, Linxia Gu, Stacey R. Froemming

Department of Mechanical and Materials Engineering: Faculty Publications

The stent-artery interactions have been increasingly studied using the finite element method for better understanding of the biomechanical environment changes on the artery and its implications. However, the deployment of balloon-expandable stents was generally simplified without considering the balloon-stent interactions, the initial crimping process of the stent, its overexpansion routinely used in the clinical practice, or its recoil process. In this work, the stenting procedure was mimicked by incorporating all the above-mentioned simplifications. The impact of various simplifications on the stent-induced arterial stresses was systematically investigated. The plastic strain history of stent and its resulted geometrical variations, as well as …