Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Biomedical Engineering and Bioengineering

Oxygen Transport In Carotid And Stented Coronary Arteries, Eoin A. Murphy Jan 2017

Oxygen Transport In Carotid And Stented Coronary Arteries, Eoin A. Murphy

Doctoral

Oxygen deficiency, known as hypoxia, in arterial walls has been linked to increased intimal hyperplasia, which is the main adverse biological process causing in-stent restenosis. Stent implantation can have significant effects on the oxygen transport into the arterial wall. Helical flow has been theorised to improve the local haemodynamics and the oxygen transport within stented arteries. In this study an advanced oxygen transport model was developed to assess different stent designs. This advanced oxygen transport model incorporates both the free and bound oxygen contained in blood and includes a shear-dependent dispersion coefficient for red blood cells. In two test cases …


Force Sensing Surgical Scissor Blades Using Fibre Bragg Grating Sensors, Dean Callaghan Sep 2013

Force Sensing Surgical Scissor Blades Using Fibre Bragg Grating Sensors, Dean Callaghan

Doctoral

This thesis considers the development and analysis of unique sensorised surgical scissor blades for application in minimally invasive robotic surgery (MIRS). The lack of haptic (force and tactile) feedback to the user is currently an unresolved issue with modern MIRS systems. This thesis presents details on smart sensing scissor blades which enable the measurement of instrument-tissue interaction forces for the purpose of force reflection and tissue property identification. A review of current literature established that there exists a need for small compact, biocompatible, sterilisable and robust sensors which meet the demands of current MIRS instruments. Therefore, the sensorised blades exploit …


Multimodal Wearable Sensors For Human-Machine Interfaces, Mark Nolan Aug 2013

Multimodal Wearable Sensors For Human-Machine Interfaces, Mark Nolan

Doctoral

Certain areas of the body, such as the hands, eyes and organs of speech production, provide high-bandwidth information channels from the conscious mind to the outside world. The objective of this research was to develop an innovative wearable sensor device that records signals from these areas more conveniently than has previously been possible, so that they can be harnessed for communication. A novel bioelectrical and biomechanical sensing device, the wearable endogenous biosignal sensor (WEBS), was developed and tested in various communication and clinical measurement applications.

One ground-breaking feature of the WEBS system is that it digitises biopotentials almost …


Arterial Tissue Perforation Using Ultrasonically Vibrating Wire Waveguides, Mark Wylie Jan 2011

Arterial Tissue Perforation Using Ultrasonically Vibrating Wire Waveguides, Mark Wylie

Doctoral

Chronic Total Occlusions (CTOs) are fibrous and calcified atherosclerotic lesions which completely occlude the artery. They are difficult to treat with standard dilation procedures as they cannot be traversed easily. Their treatment is also associated with a high risk of arterial perforation. Low frequency ultrasonic vibrations delivered via wire waveguides represent a minimally invasive treatment for CTOs and other tissue ablation applications. These devices typically operate at 20–50 kHz delivering wire waveguide distal tip amplitudes of vibration of 0-60 μm. The diseased tissue is ablated or disrupted by repetitive direct mechanical contact and cavitation. This research assesses the susceptibility of …