Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Biomedical Engineering and Bioengineering

Long-Range Aceo Phenomena In Microfluidic Channel, Diganta Dutta, Keifer Smith, Xavier Palmer Jan 2023

Long-Range Aceo Phenomena In Microfluidic Channel, Diganta Dutta, Keifer Smith, Xavier Palmer

Electrical & Computer Engineering Faculty Publications

Microfluidic devices are increasingly utilized in numerous industries, including that of medicine, for their abilities to pump and mix fluid at a microscale. Within these devices, microchannels paired with microelectrodes enable the mixing and transportation of ionized fluid. The ionization process charges the microchannel and manipulates the fluid with an electric field. Although complex in operation at the microscale, microchannels within microfluidic devices are easy to produce and economical. This paper uses simulations to convey helpful insights into the analysis of electrokinetic microfluidic device phenomena. The simulations in this paper use the Navier–Stokes and Poisson Nernst–Planck equations solved using COMSOL …


Detection Method Of Subclinical Atherosclerosis Of The Carotid Artery With A Hemodynamics Modeling Approach, Marisa Peressini Jun 2018

Detection Method Of Subclinical Atherosclerosis Of The Carotid Artery With A Hemodynamics Modeling Approach, Marisa Peressini

Master's Theses

Subclinical atherosclerosis is an important area of research to evaluate stroke risk and predict localization of plaque. The current methods for detecting atherosclerosis risk are insufficient because it is based on The Framingham Risk Score and carotid intima media thickness, therefore an engineering detection model based on quantifiable data is needed. Laminar and turbulent flow, dictated by Reynolds number and relative roughness, was modeled through the carotid artery bifurcation to compare shear stress and shear rate. Computer-aided design and fluid flow software were used to model hemodynamics through the carotid artery. Data from the model was derived from governing equations …


Fluid Flow Characterization In Rapid Prototyped Common Iliac Artery Aneurysm Molds, Daniel Cole Greinke Mar 2016

Fluid Flow Characterization In Rapid Prototyped Common Iliac Artery Aneurysm Molds, Daniel Cole Greinke

Master's Theses

The goal of this project was to determine whether i) fused deposition modeling could be employed to manufacture molds for vascular constructs, ii) whether vascular constructs could be created from these molds, and iii) to verify practical equivalence between observed fluid velocities. Dye tracking was to be employed to characterize fluid velocity profiles through the in vitro vascular constructs, including a half-vessel model and a full vessel model of an iliac artery aneurysm. A PDMS half-vessel construct was manufactured, and the movement of dye through the construct was tracked by a cellphone camera. Thresholds were applied to each video in …