Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 9 of 9

Full-Text Articles in Biomedical Engineering and Bioengineering

Tibial Compression During Activities Of Daily Living In Young And Older Adults, Elijah Miles Walker Dec 2022

Tibial Compression During Activities Of Daily Living In Young And Older Adults, Elijah Miles Walker

Boise State University Theses and Dissertations

Introduction: Stress fracture, particularly in the tibia, is a growing concern among older adults (greater than 65 years). Older adults may have inherent stress fracture risk from ageing-related changes to their musculoskeletal system. Specifically, older adults reduced ankle neuromuscular function may impair their ability to attenuate repetitive compressive forces experienced during daily locomotor tasks and increase the likelihood of suffering bone damage from decreased bone tissue elasticity. Yet, it is currently unknown if older adults exhibit greater tibial compression than their younger counterparts during locomotor tasks. Purpose: This study sought to quantify tibial compression for older and younger adults when …


Predicting Surgical Outcome In Patients With Recurrent Patellar Dislocation, Dario De Caro Aug 2022

Predicting Surgical Outcome In Patients With Recurrent Patellar Dislocation, Dario De Caro

Boise State University Theses and Dissertations

Introduction

Lateral dislocation of the patella is a common injury in active adolescents and young adults. Patients who are ultimately managed surgically have a significantly lower risk of recurrent dislocation. However, determining the optimal surgical treatment remains a challenge, with patients sometimes undergoing multiple surgeries prior to successful stabilization. The aim of this study is to computationally evaluate patients that have undergone multiple surgeries to correct for recurrent lateral patellar dislocation and predict their clinical outcome.

Methods

Our patient cohort consisted of 16 patients with patella dislocation. Patient-specific imaging were used to create three-dimensional (3D) finite element (FE) models of …


Role Of The Nuclear Envelope In The Mechanoregulation Adipogenesis, Matthew H. Goelzer Dec 2021

Role Of The Nuclear Envelope In The Mechanoregulation Adipogenesis, Matthew H. Goelzer

Boise State University Theses and Dissertations

Mechanical signals are known regulators of mesenchymal stem cell (MSC) fate, regulating their differentiation into osteoblasts, chondrocytes, and adipocytes. These relevant mechanical signals reach to nucleus through nuclear envelope proteins such as Lamin A/C and the Linker of the Nucleoskeleton and Cytoskeleton (LINC) complexes. Within the context of bone, clinically relevant mutations of Lamin A/C and the LINC complexes have been shown to alter adipogenic and osteogenic MSC differentiation patterns, suggesting that that nucleo-cytoskeletal connectivity provided by nuclear envelope is important in regulating MSC fate. Using MSC adipogenesis as a model of MSC mechanical regulation, the goal of this work …


3d Printable And Computational Models Of The Bone Marrow Mechanical Environment, Alexander Regner May 2021

3d Printable And Computational Models Of The Bone Marrow Mechanical Environment, Alexander Regner

Boise State University Theses and Dissertations

Aged individuals and astronauts experience bone loss despite rigorous physical activity. Bone mechanoresponse is in part regulated by mesenchymal stem cells (MSCs). We reported that daily low intensity vibration (LIV) restores MSC proliferation in senescence and simulated microgravity models, suggesting reduced mechanical signal delivery to MSCs likely contributes to declining bone mechanoresponse. To this end, we have developed a 3D bone marrow analog which controls trabecular geometry, marrow mechanics and external stimuli.

Finite element (FE) models of hydrogels, representing bone marrow, were generated using instantaneous compression (1000% strain/s, 20% strain) and relaxation experiments (100s) of both gelatin and hyaluronin-based hydrogels. …


The Effect Of Implant Conformity On Muscle Force Requirements In The Implanted Knee, Grace Mcconnochie Aug 2019

The Effect Of Implant Conformity On Muscle Force Requirements In The Implanted Knee, Grace Mcconnochie

Boise State University Theses and Dissertations

Implant geometry is a significant factor in determining knee stability and patient satisfaction following total knee replacement (TKR). Ineffective muscle recruitment, impaired joint functionality and increased implant wear are consequences of an unstable knee replacement. Current knee laxity evaluation techniques are limited in their ability to account for the muscular response to knee instability. This study utilizes a subject specific lower-body musculoskeletal finite element (FE) model with dynamic muscle loading to evaluate implant laxity during activities of daily living. The effect of varying implant conformity on the muscle forces required to maintain a target kinematic profile during simulated laxity testing …


Development Of A Statistical Shape-Function Model Of The Implanted Knee For Real-Time Prediction Of Joint Mechanics, Kalin Gibbons Aug 2019

Development Of A Statistical Shape-Function Model Of The Implanted Knee For Real-Time Prediction Of Joint Mechanics, Kalin Gibbons

Boise State University Theses and Dissertations

Outcomes of total knee arthroplasty (TKA) are dependent on surgical technique, patient variability, and implant design. Non-optimal design or alignment choices may result in undesirable contact mechanics and joint kinematics, including poor joint alignment, instability, and reduced range of motion. Implant design and surgical alignment are modifiable factors with potential to improve patient outcomes, and there is a need for robust implant designs that can accommodate patient variability. Our objective was to develop a statistical shape-function model (SFM) of a posterior stabilized implant knee to instantaneously predict output mechanics in an efficient manner. Finite element methods were combined with Latin …


Effects Of Stride Length On Lower Limb Stiffness When Running With Body Borne Load, Nick Lobb May 2018

Effects Of Stride Length On Lower Limb Stiffness When Running With Body Borne Load, Nick Lobb

Boise State University Theses and Dissertations

Introduction: During military activities, soldiers are often required to run at a fixed cadence with body borne load, but these loads purportedly increase leg stiffness, leading to increased risk of musculoskeletal injury. Yet, to date, it is unknown how altering stride length when running with body borne load affects lower limb stiffness for males and females. Purpose: To quantify leg stiffness, and lower limb joint (hip, knee and ankle) stiffness for males and females using different stride lengths to run with body borne loads of 20 kg, 25 kg, 30 kg, and 35 kg. Methods: Twenty-seven (17 males and 10 …


Sex Differences In Lower Limb Biomechanics During A Single-Leg Cut With Body Borne Load, Auralea Carylon Fain May 2018

Sex Differences In Lower Limb Biomechanics During A Single-Leg Cut With Body Borne Load, Auralea Carylon Fain

Boise State University Theses and Dissertations

Introduction: Musculoskeletal injuries are ever-increasing in military personnel, particularly females. These musculoskeletal injuries are attributed to adaptations in lower limb biomechanics while performing routine military tasks, such as a single-leg cut, with the addition of body borne load. However, it is unknown if females and males exhibit similar lower limb biomechanics with the addition of body borne load during these tasks. This study sought to compare the lower limb biomechanical adaptations exhibited by females and males performing a single-leg cut with body borne load. Methods: Eleven females and 17 males had lower limb biomechanics quantified during a single-leg cut with …


Using The Continuous Wavelet Transform To Characterize Differences Between Impact Signals From Non-Cleated And Cleated Turf Shoes, Wayne Robert Fischer May 2010

Using The Continuous Wavelet Transform To Characterize Differences Between Impact Signals From Non-Cleated And Cleated Turf Shoes, Wayne Robert Fischer

Boise State University Theses and Dissertations

The continuous wavelet transform was used to characterize the time-frequency differences between impact forces from non-cleated and cleated turf shoes among male football athletes who perform cut and run activities. This research is significant because it elucidates how athletes experience different impact force and torque frequency content based on the type of shoe they are wearing. The complex Morlet mother wavelet was used to analyze all ground reaction force and vertical ground reaction moment signals to create time-frequency power spectrum plots. For each signal, a statistical confidence interval was calculated and displayed along with the cone of influence caused by …