Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Biomechanics and Biotransport

Western University

Contact mechanics

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Biomedical Engineering and Bioengineering

The Effects Of A Porous Internal Lattice Design On The Articular Contact Mechanics Of Radial Head Hemiarthroplasty Implants, Jessica Benitah Mar 2022

The Effects Of A Porous Internal Lattice Design On The Articular Contact Mechanics Of Radial Head Hemiarthroplasty Implants, Jessica Benitah

Electronic Thesis and Dissertation Repository

Hemiarthroplasty, where one side of a joint is replaced, is a minimally invasive procedure. It allows for the preservation of native tissue, though a significant ramification is accelerated cartilage wear when articulating with high stiffness materials that do not mimic the mechanical stiffness of the native tissue. An implant that employs a lattice design can significantly lower the stiffness of a solid structure whilst maintaining strength. This study was conducted to investigate the effect of implementing a porous internal lattice structure with a thin outer shell on the articular contact mechanics, using a radial head hemiarthroplasty. It was hypothesized that …


Influence Of Scapular Notching On Contact Mechanics And Simulator Wear Of Reverse Total Shoulder Arthroplasty Implants, Michael William Griffiths Oct 2017

Influence Of Scapular Notching On Contact Mechanics And Simulator Wear Of Reverse Total Shoulder Arthroplasty Implants, Michael William Griffiths

Electronic Thesis and Dissertation Repository

Scapular notching is a common complication of reverse total shoulder arthroplasty (RTSA) wherein the predominant focus of current literature has been on changes in osseous anatomy. However, the implications on RTSA performance from the damaged humeral cup is largely unknown. Therefore the present work describes the effects of the initiation and propagation of the humeral cup defect resulting from scapular notching through the use of finite element modeling and wear simulation, in order to assess changes in RTSA contact mechanics and tribological properties. A significant decrease in articular contact area and increase in maximum contact stress values was found for …