Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Biomechanics and Biotransport

California Polytechnic State University, San Luis Obispo

Cartilage

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Biomedical Engineering and Bioengineering

Subject-Specific Finite Element Models Of The Human Knee For Transtibial Amputees To Analyze Tibial Cartilage Pressure For Gait, Cycling, And Elliptical Training, Jonathon Stearns Mar 2020

Subject-Specific Finite Element Models Of The Human Knee For Transtibial Amputees To Analyze Tibial Cartilage Pressure For Gait, Cycling, And Elliptical Training, Jonathon Stearns

Master's Theses

It is estimated that approximately 10-12% of the adult population suffers from osteoarthritis (OA), with long reaching burdens personally and socioeconomically. OA also causes mild discomfort to severe pain in those suffering from the disease. The incidence rate of OA for individuals with transtibial amputations is much than average in the tibiofemoral joint (TF). It is well understood that abnormal articular cartilage stress, whether that be magnitude or location, increases the risk of developing OA. Finite element (FE) simulations can predict stress in the TF joint, many studies throughout the years have validated the technology used for this purpose. This …


Viscoelastic Anisotropic Finite Element Mixture Model Of Articular Cartilage Using Viscoelastic Collagen Fibers And Validation With Stress Relaxation Data, Matthew Alexander Griebel Jun 2012

Viscoelastic Anisotropic Finite Element Mixture Model Of Articular Cartilage Using Viscoelastic Collagen Fibers And Validation With Stress Relaxation Data, Matthew Alexander Griebel

Master's Theses

Experimental results show that collagen fibers exhibit stress relaxation under tension and a highly anisotropic distribution. To further develop the earlier model of Stender [1], the collagen constituent was updated to reflect its intrinsic viscoelasticity and anisotropic distribution, and integrated with an existing mixture model with glycosaminoglycans and ground substance matrix. A two-term Prony series expansion of the quasi-linear viscoelastic model was chosen to model the viscoelastic properties of the collagen fibers. Material parameters were determined by using the simplex method to minimize the sum of squared errors between model results and experimental stress relaxation data of tissue in tension. …