Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 9 of 9

Full-Text Articles in Biomedical Engineering and Bioengineering

Shape Memory Alloy Capsule Micropump For Drug Delivery Applications, Youssef Mohamed Kotb Jun 2024

Shape Memory Alloy Capsule Micropump For Drug Delivery Applications, Youssef Mohamed Kotb

Theses and Dissertations

Implantable drug delivery devices have many benefits over traditional drug administration techniques and have attracted a lot of attention in recent years. By delivering the medication directly to the tissue, they enable the use of larger localized concentrations, enhancing the efficacy of the treatment. Passive-release drug delivery systems, one of the various ways to provide medication, are great inventions. However, they cannot dispense the medication on demand since they are nonprogrammable. Therefore, active actuators are more advantageous in delivery applications. Smart material actuators, however, have greatly increased in popularity for manufacturing wearable and implantable micropumps due to their high energy …


Borophene And Graphene For Non-Enzymatic Biosensor- Ab-Initio Study, Omar A. Ismail Dec 2023

Borophene And Graphene For Non-Enzymatic Biosensor- Ab-Initio Study, Omar A. Ismail

Theses and Dissertations

Non-enzymatic glucose sensing holds promise to overcome limitations associated with glucose oxidase, such as oxygen dependence and short shelf life. This study explores the potential sensing capabilities of borophene and graphene through direct interaction with various compounds, including β-glucose, uric acid, ascorbic acid, fructose, and acetaminophen. Using Density Functional Theory (DFT), we calculated binding energies and the respective Density of States (DOS) for these adsorbates on both graphene and borophene surfaces. Preliminary results suggest that borophene might exhibit nearly twice the affinity for β-glucose compared to graphene. Moreover, the calculated Density of States reveals distinct distortions in the electronic states …


Modeling Of Patient-Specific Periaortic Mechanics And Pulmonary Artery Hemodynamics Based On Phase-Contrast Magnetic Resonance Imaging Sequences., Johane H. Bracamonte Jan 2022

Modeling Of Patient-Specific Periaortic Mechanics And Pulmonary Artery Hemodynamics Based On Phase-Contrast Magnetic Resonance Imaging Sequences., Johane H. Bracamonte

Theses and Dissertations

Inverse modeling in cardiovascular medicine is a collection of methodologies that can provide non-invasive patient-specific estimations of clinical risk factors using medical imaging as inputs. Its incorporation into clinical practice has the potential to improve diagnosis and treatment planning with low associated risks and costs.

Herein, three different phase contrast magnetic resonance imaging (MRI) modalities were implemented as input data, displacement encoding with stimulated echoes (DENSE MRI) applied, and time-resolved velocity encoding phase-contrast MRI, in 1D and 3D, applied to pulmonary artery (PA) hemodynamics.

A model to account for the effect of periaortic interactions due to static and dynamic structures …


Nebulizer-Based Systems To Improve Pharmaceutical Aerosol Delivery To The Lungs, Benjamin M. Spence Jan 2021

Nebulizer-Based Systems To Improve Pharmaceutical Aerosol Delivery To The Lungs, Benjamin M. Spence

Theses and Dissertations

Combining vibrating mesh nebulizers with additional new technologies leads to substantial improvements in pharmaceutical aerosol delivery to the lungs across therapeutic administration methods. In this dissertation, streamlined components, aerosol administration synchronization, and/or Excipient Enhanced Growth (EEG) technologies were utilized to develop and test several novel devices and aerosol delivery systems. The first focus of this work was to improve the poor delivery efficiency, e.g., 3.6% of nominal dose (Dugernier et al. 2017), of aerosolized medication administration to adult human subjects concurrent with high flow nasal cannula (HFNC) therapy, a form of continuous-flow non-invasive ventilation (NIV). The developed Low-Volume Mixer-Heater (LVMH) …


Development Of A Single Use Device Intended To Wash Blood Clot Debris From A Stent Retriever In The Operating Room, Shane Diller Jan 2020

Development Of A Single Use Device Intended To Wash Blood Clot Debris From A Stent Retriever In The Operating Room, Shane Diller

Theses and Dissertations

Ischemic stroke is a life-threatening condition that requires immediate surgical intervention to remove the blood clot that is lodged in the blood vessels of the brain. Mechanical thrombectomy, performed by an endovascular surgeon, involves inserting a stent retriever, which deploys distally and attempts to capture the clot when dragged backwards. A complication prevalent in 50% - 67% of cases is that the blood clot is only partially removed and clings to the mesh framework of the stent. The operating surgeon must either clean the debris from the stent retriever, to be reinserted or throw the stent retriever away and open …


Quantification And Modeling Of Bladder Biomechanics Mechanisms Linking Spontaneous Rhythmic Contractions And Dynamic Elasticity To Detrusor Overactivity, Zachary E. Cullingsworth Jan 2020

Quantification And Modeling Of Bladder Biomechanics Mechanisms Linking Spontaneous Rhythmic Contractions And Dynamic Elasticity To Detrusor Overactivity, Zachary E. Cullingsworth

Theses and Dissertations

Overactive bladder (OAB) is a chronic condition affecting approximately 20% of adults in the United States. Detrusor overactivity (DO) is the presence of non-voiding contractions in the detrusor (bladder) muscle during filling and is present in some individuals with OAB. DO is currently identified visually during a urodynamics (UD) study involving pressure catheters and filling and voiding of the bladder to evaluate function. UD provides limited subtyping of DO, and an incomplete understanding of mechanisms contributing to OAB.

Aim 1 of this study was to develop objective tools to quantify, subgroup and better understand …


Efficiency Evaluation Of A Magnetically Driven Multiple Disk Centrifugal Blood Pump, Kayla H. Moody Jan 2016

Efficiency Evaluation Of A Magnetically Driven Multiple Disk Centrifugal Blood Pump, Kayla H. Moody

Theses and Dissertations

Heart failure is expected to ail over 8 million people in America by 2030 leaving many in need of cardiac replacement. To accommodate this large volume of people, ventricular assist devices (VADs) are necessary to provide mechanical circulatory support. Current VADs exhibit issues such as thrombosis and hemolysis caused by large local pressure drops and turbulent flow within the pump. Multiple disk centrifugal pumps (MDCPs) use shearing and centrifugal forces to produce laminar flow patterns and eliminate large pressure drops within the pump which greatly reduce risks that are in current VADs. The MDCP has a shaft drive system (SDS) …


Computational Modeling To Assess Surgical Procedures For The Treatment Of Adult Acquired Flatfoot Deformity, Brian A. Smith Jan 2015

Computational Modeling To Assess Surgical Procedures For The Treatment Of Adult Acquired Flatfoot Deformity, Brian A. Smith

Theses and Dissertations

Several surgically corrective procedures are considered to treat Adult Acquired Flatfoot Deformity (AAFD) patients, relieve pain, and restore function. Procedure selection is based on best practices and surgeon preference. Recent research created patient specific models of Adult Acquired Flatfoot Deformity (AAFD) to explore their predictive capabilities and examine effectiveness of the surgical procedure used to treat the deformity. The models’ behavior was governed solely by patient bodyweight, soft tissue constraints, and joint contact without the assumption of idealized joints. The current work expanded those models to determine if an alternate procedure would be more effective for the individual. These procedures …


Analysis And Modeling Of The Roles Of Actin-Myosin Interactions In Bladder Smooth Muscle Biomechanics, Seyed Omid Komariza Jan 2014

Analysis And Modeling Of The Roles Of Actin-Myosin Interactions In Bladder Smooth Muscle Biomechanics, Seyed Omid Komariza

Theses and Dissertations

Muscle mechanical behavior potentially plays an important role in some of the most common bladder disorders. These include overactive bladder, which can involve involuntary contractions during bladder filling, and impaired contractility or underactive bladder, which may involve weak or incomplete contractions during voiding. Actin-myosin cross-bridges in detrusor smooth muscle (DSM) are responsible for contracting and emptying the bladder. The total tension produced by muscle is the sum of its preload and active tensions. Studies suggest that actin-myosin cross-links are involved in adjustable preload stiffness (APS), which is characterized by a preload tension curve that can be shifted along the length …