Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Biomedical Engineering and Bioengineering

Effect Of Plasticizer On Oxygen Permeability Of Cast Polylactic Acid (Pla) Films Determined Using Dynamic Accumulation Method, Kurniawan Yuniarto, Bruce A. Welt, Aris Purwanto, Hadi Karia Purwadaria, Ayman Abdellatief, Titi C. Sunarti, Setyo Purwanto Oct 2014

Effect Of Plasticizer On Oxygen Permeability Of Cast Polylactic Acid (Pla) Films Determined Using Dynamic Accumulation Method, Kurniawan Yuniarto, Bruce A. Welt, Aris Purwanto, Hadi Karia Purwadaria, Ayman Abdellatief, Titi C. Sunarti, Setyo Purwanto

Journal of Applied Packaging Research

Polylactic acid (PLA) is becoming an increasingly important biopolymer for packaging applications. PLA brittleness limits its applicability. This study evaluated PLA properties with increasing amounts of added polyethylene glycol (PEG) plasticizer. Oxygen transmission rate (OTR) of cast films was determined using the newly available Dynamic Accumulation (DA) method. Arrhenius temperature sensitivity of OTR and polymer Permeability was also determined. Permeability of neat PLA is 4.848 ml mm (STP)/m2 s kPa; hence, 4.84 ml mm (STP)/m2 s kPa, 4.07 ml mm (STP)/m2 s kPa and 5.42 ml mm (STP)/m2 s kPa by adding PEG 1 %, 5% …


Improvements To Uhmwpe, Brooke Mckelvogue Aug 2014

Improvements To Uhmwpe, Brooke Mckelvogue

Journal of Undergraduate Research at Minnesota State University, Mankato

Ultra high molecular weight polyethylene (UHMWPE) is a material used in artificial implants for articular joint replacements. However, these implants have a limited lifespan in which the patient will be pain-free due to the wear of the UHMWPE components. Recently crosslinking, or exposing the material to radiation, has been used to extend the wear resistance of UHMWPE. Crosslinking introduces another set of drawbacks; mainly the reduction of the fracture toughness of UHMWPE and the generation of free radicals, which leave the polymer vulnerable to damage from oxidation. Currently, research is being conducted on other methods to increase the wear resistance …