Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Biomaterials

Master's Theses

Blood Vessel Mimic

Publication Year

Articles 1 - 3 of 3

Full-Text Articles in Biomedical Engineering and Bioengineering

Evaluation Of Blood Vessel Mimic Scaffold Biocompatibility, Nicole M. Abraham Jun 2021

Evaluation Of Blood Vessel Mimic Scaffold Biocompatibility, Nicole M. Abraham

Master's Theses

The Tissue Engineering Research Lab at California Polytechnic State University, San Luis Obispo focuses on creating tissue-engineered blood vessel mimics (BVMs) for use in preclinical testing of vascular devices. These BVMs are composed of electrospun scaffolds made of an assortment of polymers that are seeded with different cell types. This integration of polymers with cells leads to the need for biocompatibility testing of the polymer scaffolds. Many of the lab’s newest scaffolds have not been fully characterized for biologic interactions. Therefore, the first aim of this thesis developed methods for in vitro cytotoxicity testing of polymers used in the fabrication …


Characterization And Implementation Of A Decellularized Porcine Vessel As A Biologic Scaffold For A Blood Vessel Mimic, Aubrey N. Smith Jun 2011

Characterization And Implementation Of A Decellularized Porcine Vessel As A Biologic Scaffold For A Blood Vessel Mimic, Aubrey N. Smith

Master's Theses

Every 34 seconds, someone in the United States suffers from a heart attack. Most heart attacks are caused by atherosclerotic build up in the coronary arteries, occluding normal blood flow. Balloon angioplasty procedures in combination with a metal stent often result in successful restoration of normal blood flow. However, bare metal stents often lead to restenosis and other complications. To compensate for this problem, industry has created drug-eluting stents to promote healing of the artery wall post stenting. These stents are continually advancing toward better drug-eluting designs and methods, resulting in a need for fast and reliable pre-clinical testing modalities. …


Assessment Of Electrospinning As An In-House Fabrication Technique For Blood Vessel Mimic Cellular Scaffolding, Colby M. James Sep 2009

Assessment Of Electrospinning As An In-House Fabrication Technique For Blood Vessel Mimic Cellular Scaffolding, Colby M. James

Master's Theses

Intravascular devices, such as stents, must be rigorously tested before they can be approved by the FDA. This includes bench top in vitro testing to determine biocompatibility, and animal model testing to ensure safety and efficacy. As an intermediate step, a blood vessel mimic (BVM) testing method has been developed that mimics the three dimensional structure of blood vessels using a perfusion bioreactor system, human derived endothelial cells, and a biocompatible polymer scaffold used to support growth of the blood vessel cells. The focus of this thesis was to find an in-house fabrication method capable of making cellular scaffolding for …