Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Biomaterials

Electronic Theses and Dissertations

Theses/Dissertations

CNF

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Biomedical Engineering and Bioengineering

Nanocellulose Conduits For Enhanced Regeneration Of Peripheral Nerve Injuries, Nicklaus R. Carter May 2021

Nanocellulose Conduits For Enhanced Regeneration Of Peripheral Nerve Injuries, Nicklaus R. Carter

Electronic Theses and Dissertations

Peripheral neuropathy is estimated to afflict 20 million people in the United States. Most cases of neuropathy result from physical injuries and trauma arising from automobile accidents and war. Peripheral nerves have the intrinsic ability to regenerate over time, bridging the injury gap. However native regeneration is limited to a distance of only a few millimeters. Current methods utilized to assist in the regeneration of peripheral nerves over distances exceeding those amenable to native repair include nerve autografts and allografts, and implantation of conduits. Nerve autografts are regarded as the most effective method but require a second surgical site to …


Nanocellulose Fibers As A Potential Material For Orthopedic Implantation Application, David Gregg Holomakoff Aug 2017

Nanocellulose Fibers As A Potential Material For Orthopedic Implantation Application, David Gregg Holomakoff

Electronic Theses and Dissertations

The field of biomaterials is of immense importance and will continue to grow and develop in the coming years. Novel materials, as well as new approaches for use of existing materials, are sought after now more than ever. Current metal orthopedic implants have an over engineered stiffness and Young’s modulus, causing a phenomenon called stress shielding. Metal implants absorb the majority of force typically exerted on bone and the osteocytes within. When osteocytes fail to sense mechanical forces bones become less dense and weaken, causing possible fracture and other complications. A new orthopedic material is needed matching Young’s modulus of …