Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Biomaterials

Utah State University

Biomaterials

Articles 1 - 2 of 2

Full-Text Articles in Biomedical Engineering and Bioengineering

Development And Characterization Of Aqueous-Based Recombinant Spider Silk Protein Biomaterials With Investigations Into Potential Applications, Thomas I. Harris Aug 2018

Development And Characterization Of Aqueous-Based Recombinant Spider Silk Protein Biomaterials With Investigations Into Potential Applications, Thomas I. Harris

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

Spider silks are incredible natural materials that possess desirable combinations of strength, elasticity, weight, and robustness. Other properties such as biocompatibility and biodegradability further increase the worth of these materials. The possibility of farming spiders is impractical due to spiders’ natural behaviors. Modern biotechnologies have allowed for recombinant spider silk proteins (rSSps) to be produced without the use of spiders. However, the features responsible for spider silks impressive properties can cause difficulties with producing silk materials. A recently developed water-based and biomimetic solvation method has provided a solution to such difficulties and has also led to novel silk biomaterials. Most …


Biomaterials Associated Infections: The Scale Of The Problem, David J. Stickler, Robert J. C. Mclean Jan 1995

Biomaterials Associated Infections: The Scale Of The Problem, David J. Stickler, Robert J. C. Mclean

Cells and Materials

The biomaterials used in the manufacture of implanted prosthetic devices profoundly impair the host's ability to opsonise and phagocytose invading microbes. As a result, while these devices generally provide effective relief from painful, crippling and life-threatening disorders, they can also induce vulnerability to infection in the recipients. The surfaces of the implants are susceptible to colonisation by microbial biofilms. The cells in the biofilm.s are further protected against opsonophagocytosis and are also resistant to antibacterials. Device associated infections thus tend to be refractile to antibiotic therapy and in many cases the device has to be removed before the infection will …