Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Biomedical Engineering and Bioengineering

Eagle Medical Tray Denesting & Debris Removal Process, Nicholas Allen Ungefug, Noah Chavez, Susana Shu-Lin Okhuysen, Michael Augustine Pennington Jun 2022

Eagle Medical Tray Denesting & Debris Removal Process, Nicholas Allen Ungefug, Noah Chavez, Susana Shu-Lin Okhuysen, Michael Augustine Pennington

Industrial and Manufacturing Engineering

Eagle Medical Incorporated is a contract medical device packaging and sterilization company. The company purchases thermoformed medical packaging trays, which maintain the sterility of medical devices, from various manufacturers. To ensure packaging quality and to prevent cleanroom contamination, Eagle Medical inspects and sterilizes each blister tray that they order. This process is an essential non-value-added activity that creates a bottleneck. Cleanroom employees must stop packaging medical devices and attend to the processing of blister trays and packaging solutions. The blister trays arrive at Eagle’s facility in nested stacks. Vibration and movement during shipping further compresses the stacks, which makes separation …


Insole Fall Prevention Device, Nick M. Hughes, Andrew M. Slaboda May 2022

Insole Fall Prevention Device, Nick M. Hughes, Andrew M. Slaboda

Biomedical Engineering

Falls among the aging population occur every single day, with 1 in every 5 resulting in some injury and 300,000 hospitalized every year with a hip fracture [1]. The most popular and effective way to mitigate these falls is through physical therapist intervention. However, with the increased popularity in telerehab, many patients at risk for falls cannot accurately convey their gait tendencies to their physical therapists from the comfort of their home or while not in direct contact with the PT. A device like an insole, implanted with force sensors, which measures different parts of a patient’s foot, could convey …


Optimization Of A Novel Nipam-Based Thermoresponsive Copolymer For Intramuscular Injection As A Myoblast Delivery Vehicle To Combat Peripheral Artery Occlusive Disease, Quentin R. Klueter Mar 2022

Optimization Of A Novel Nipam-Based Thermoresponsive Copolymer For Intramuscular Injection As A Myoblast Delivery Vehicle To Combat Peripheral Artery Occlusive Disease, Quentin R. Klueter

Master's Theses

There is a need for a minimally invasive delivery method to enable cell therapies to combat peripheral artery occlusive disease (PAOD) in end stage patients. Myoblasts show promise as a cell mediated therapy but warrant an improved delivery method to increase cell retention in the region of interest because of their adherent nature, relative to previously used BM-MNC’s that are non-adherent. Contemporary issues with achieving successful cell therapies of vasculature can be mainly characterized by the lack of clinical translation from promising animal studies and absence of cell delivery scaffolding. Naturally, polymers have been widely experimented with as grafts to …