Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Biomedical Engineering and Bioengineering

Polymeric Nanoparticles As An Antioxidant Delivery System For Age-Related Eye Disease, Sean M. Swetledge Jul 2020

Polymeric Nanoparticles As An Antioxidant Delivery System For Age-Related Eye Disease, Sean M. Swetledge

LSU Doctoral Dissertations

Advantages of polymeric nanoparticles as ocular drug delivery systems include controlled release, enhanced drug stability and bioavailability, and specific tissue targeting. Nanoparticle properties such as hydrophobicity, size, and charge, mucoadhesion, as well as administration route and suspension media affect their ability to overcome ocular barriers and distribute in the eye, and must be carefully designed for specific target tissues and ocular diseases. A review was conducted to serve as a guide to optimizing polymeric nanoparticle delivery systems for ocular drug delivery by discussing the effects of nanoparticle composition and administration method on their ocular penetration, distribution, elimination, toxicity, and efficacy, …


Chitosan Nanoparticle Modifications For Improved Gene Delivery In An Oral Dna Vaccine Application, Austin Helmink Apr 2017

Chitosan Nanoparticle Modifications For Improved Gene Delivery In An Oral Dna Vaccine Application, Austin Helmink

Honors Theses

Vaccines represent one of the most significant medical innovations of the 20th century, resulting in the eradication or near eradication of a handful of deadly diseases. However, many infectious diseases remain resistant to effective vaccination, largely due to a lack full immune activation by traditional protein-based vaccines. A promising alternative vaccination strategy is the emerging development of DNA vaccines, which rely upon the delivery of exogenous genetic material to host cells encoding for a viral or bacterial antigen in order to induce a robust immune response by closely mimicking live infection. The delivery of genetic material requires a carrier …


Optimization And Synthesis Of Silver Nanoparticles Embedded Within A Porous Substrate For Raman Spectroscopy, Matthew W. Talbot May 2016

Optimization And Synthesis Of Silver Nanoparticles Embedded Within A Porous Substrate For Raman Spectroscopy, Matthew W. Talbot

Honors College

Raman spectroscopy is a promising method for detection of a wide range of water contaminants. Raman spectroscopy’s growing list of applications relies upon signal enhancement achieved in recent years. A test strip or substrate designed to optimize Raman spectra, capable of withholding water and enhancing signal, would be a useful tool for applications including water quality tests. Signal enhancement may be achieved by the addition of silver nanoparticles (NPs) into a three-dimensional structure of cellulose nanofibers (CNF). The magnitude of signal enhancement may be related to nanoparticle size and morphology, and so control over the synthesis of silver nanoparticles could …


Rational Design Of Rama-Labeled Nanoparticles For A Dual-Modaility, Light Scattering Immunoassay On A Polystyrene Seubstrate, Nathan D. Israelsen, Donald Wooley, Cynthia Hanson, Elizabeth Vargis Jan 2016

Rational Design Of Rama-Labeled Nanoparticles For A Dual-Modaility, Light Scattering Immunoassay On A Polystyrene Seubstrate, Nathan D. Israelsen, Donald Wooley, Cynthia Hanson, Elizabeth Vargis

Biological Engineering Faculty Publications

Background: Surface-enhanced Raman scattering (SERS) is a powerful light scattering technique that can be used for sensitive immunoassay development and cell labeling. A major obstacle to using SERS is the complexity of fabricating SERS probes since they require nanoscale characterization and optical uniformity. The light scattering response of SERS probes may also be modulated by the substrate used for SERS analysis. A typical SERS substrate such as quartz can be expensive. Polystyrene is a cheaper substrate option but can decrease the SERS response due to interfering Raman emission peaks and high background fluorescence. The goal of this research is to …