Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Bioimaging and Biomedical Optics

Theses/Dissertations

2019

Institution
Keyword
Publication

Articles 1 - 30 of 36

Full-Text Articles in Biomedical Engineering and Bioengineering

In Vivo Metabolic And Vascular Response To Hypoxia In Twist Knockdown Murine Breast Cancer, Brandon Sturgill Dec 2019

In Vivo Metabolic And Vascular Response To Hypoxia In Twist Knockdown Murine Breast Cancer, Brandon Sturgill

Graduate Theses and Dissertations

Twist transcription factor is often overexpressed in aggressive tumors. Although needed in early embryonic development for organogenesis, Twist is known to induce an epithelial to mesenchymal transition in cells. In cancer, epithelial to mesenchymal transitions can lead to increased motility and invasiveness. It has also been linked to metabolic reprogramming and increased metastatic risk. Furthermore, metabolic preferences can increase proliferation, enhance metastatic potential, and influence the site of metastasis. We hypothesize that Twist directly affects the metabolism of cancer cells. We expect to see in vivo what we have seen in vitro; Twist overexpression should promote a shift away from …


Quantitative Analysis Techniques For Assessing Organelle Organization And Dynamics In Individual Cells, Isaac Vargas Dec 2019

Quantitative Analysis Techniques For Assessing Organelle Organization And Dynamics In Individual Cells, Isaac Vargas

Graduate Theses and Dissertations

In biomedical optics and microscopy, the organization and morphology of organelles have been widely studied. In spite of novel imaging techniques, there is still a lack of quantitative tools to easily measure cellular characteristics from image data. Previous studies have explored multiple approaches to assess organelle organization and alignment, resulting in complicated and extensive algorithms that are both subject to multiple steps of image processing and influenced by non-cellular artifacts. In this thesis, a technique called the Modified Blanket Method (MBM) is introduced to quantify organelle organization through measurements of fractal dimension (FD) on a pixel-by-pixel basis. With the use …


Optical Spectrsocopy Of Murine Breast Tumor To Distinguish Indolent From Aggressive Disease, Joel Rodriguez Troncoso Dec 2019

Optical Spectrsocopy Of Murine Breast Tumor To Distinguish Indolent From Aggressive Disease, Joel Rodriguez Troncoso

Biomedical Engineering Undergraduate Honors Theses

Breast cancer accounts for 30% of all cancer. Metastasis is the primary cause of death among breast cancer patients. Additionally, current molecular profiling methods such as Oncotype DX, which are expensive and not widely available at all clinical facilities, only determine the risk of recurrence after treatment. Therefore, there are no current method capable of identifying metastatic patients in advance.As a result, there is an unmet clinical need to develop a cost-effective prognostic to differentiate between indolent and aggressive breast tumors. In this study, we implemented diffuse reflectance spectroscopy (DRS) system to evaluate functional changes in tumor xenografts originated from …


Design, Construction And Application Of A Home-Built, Two-Photon Microscope, William P. Breeding Aug 2019

Design, Construction And Application Of A Home-Built, Two-Photon Microscope, William P. Breeding

Electronic Theses and Dissertations

Two-photon microscopy (TPM) is a powerful, versatile imaging modality for the study of biological systems. This thesis overviews the relevant physics involved in TPM, design considerations and process of constructing a home-built, two-photon microscope, and provides a set of procedures to operate the system. Furthermore, this work explores several applications of TPM through the study of single-cell metabolism and imaging the cellular-material interface. Explored in particular depth was the imaging of cellulose nanofiber (CNF) materials, with the goal of understanding the three-dimensional nature of fibroblast cell growth when embedded within the materials. This work uncovered several optical properties of CNF, …


Multi-Dimensional Extension Of The Alternating Minimization Algorithm In X-Ray Computed Tomography, Jingwei Lu Aug 2019

Multi-Dimensional Extension Of The Alternating Minimization Algorithm In X-Ray Computed Tomography, Jingwei Lu

McKelvey School of Engineering Theses & Dissertations

X-ray computed tomography (CT) is an important and effective tool in medical and industrial imaging applications. The state-of-the-art methods to reconstruct CT images have had great development but also face challenges. This dissertation derives novel algorithms to reduce bias and metal artifacts in a wide variety of imaging modalities and increase performance in low-dose scenarios. The most widely available CT systems still use the single-energy CT (SECT), which is good at showing the anatomic structure of the patient body. However, in SECT image reconstruction, energy-related information is lost. In applications like radiation treatment planning and dose prediction, accurate energy-related information …


Multi-Dimensional Extension Of The Alternating Minimization Algorithm In X-Ray Computed Tomography, Jingwei Lu Aug 2019

Multi-Dimensional Extension Of The Alternating Minimization Algorithm In X-Ray Computed Tomography, Jingwei Lu

McKelvey School of Engineering Theses & Dissertations

X-ray computed tomography (CT) is an important and effective tool in medical and industrial

imaging applications. The state-of-the-art methods to reconstruct CT images have had

great development but also face challenges. This dissertation derives novel algorithms to

reduce bias and metal artifacts in a wide variety of imaging modalities and increase performance

in low-dose scenarios.

The most widely available CT systems still use the single-energy CT (SECT), which is

good at showing the anatomic structure of the patient body. However, in SECT image

reconstruction, energy-related information is lost. In applications like radiation treatment

planning and dose prediction, accurate energy-related information …


Quantitatively Studying Tissue Damage In Multiple Sclerosis Using Gradient Recalled Echo Mri Sequences, Biao Xiang Aug 2019

Quantitatively Studying Tissue Damage In Multiple Sclerosis Using Gradient Recalled Echo Mri Sequences, Biao Xiang

Arts & Sciences Electronic Theses and Dissertations

Multiple Sclerosis (MS) is an unpredictable, often disabling disease of the central nervous system (CNS) that disrupts the flow of information within the brain, and between the brain the body. MS is the most common progressive neurologic disease of young adults, affecting approximately 2.3 million people worldwide. It is estimated that more than 700,000 individuals are affected by MS in United States. While MS has been studied for decades, the cause of it is still not definite and a fully effective treatment for MS is not yet available. Magnetic resonance imaging (MRI) has been used extensively in MS diagnosis and …


Quantitatively Studying Tissue Damage In Multiple Sclerosis Using Gradient Recalled Echo Mri Sequences, Biao Xiang Aug 2019

Quantitatively Studying Tissue Damage In Multiple Sclerosis Using Gradient Recalled Echo Mri Sequences, Biao Xiang

Arts & Sciences Electronic Theses and Dissertations

Multiple Sclerosis (MS) is an unpredictable, often disabling disease of the central nervous system (CNS) that disrupts the flow of information within the brain, and between the brain the body. MS is the most common progressive neurologic disease of young adults, affecting approximately 2.3 million people worldwide. It is estimated that more than 700,000 individuals are affected by MS in United States. While MS has been studied for decades, the cause of it is still not definite and a fully effective treatment for MS is not yet available.

Magnetic resonance imaging (MRI) has been used extensively in MS diagnosis and …


Investigation Of The Effect Of Age On Regenerative Outcomes Following Treatment Of Volumetric Muscle Loss Injuries, John Taehwan Kim Aug 2019

Investigation Of The Effect Of Age On Regenerative Outcomes Following Treatment Of Volumetric Muscle Loss Injuries, John Taehwan Kim

Graduate Theses and Dissertations

Volumetric muscle loss (VML) is a traumatic injury in skeletal muscle resulting in the bulk loss of more than 20% of the muscle’s volume. Included in the bulk loss of muscle is the skeletal muscle niche comprised of nerve bundles, vasculature, local progenitor cells, basal lamina, and muscle fibers, overwhelming innate repair mechanisms. The hallmark of VML injury is the excessive accumulation of non-contractile, fibrotic tissue and permanent functional deficits. Though predominant in the younger demographic, the elderly population is also captured within VML injuries. There are many factors that change with aging in skeletal muscle that may further hinder …


Automatic Methods To Enhance The Quality Of Colonoscopy Video, Nidhal Kareem Shukur Azawi Aug 2019

Automatic Methods To Enhance The Quality Of Colonoscopy Video, Nidhal Kareem Shukur Azawi

Graduate Theses and Dissertations

Colonoscopy is a form of endoscopy because it uses colonoscopy device to help the doctor to understand a colon patient. Enhancing the quality of Colonoscopy images is a challenge because of the wet and dynamic environment inside the colon causes many problems even the colonoscope devise has a good quality. Some of these problems are blurriness, specular highlights shiny areas.

In this work, different kinds of techniques have been investigated in order to improve the quality of colonoscopy images. Also, variety of preprocessing approaches (removing bad images, resizing images, median filtration with and without image resizing) have been conducted to …


Visualizing Ischemic Skin Flap Necrosis Through Phasor Analysis Of Autofluorescence Lifetime Images, Hallie Ramser Toomer Aug 2019

Visualizing Ischemic Skin Flap Necrosis Through Phasor Analysis Of Autofluorescence Lifetime Images, Hallie Ramser Toomer

Graduate Theses and Dissertations

Necrotic skin flaps are difficult to predict and treat due to the lack of quantitative biomarkers. Label-free multiphoton microscopy is well suited for non-invasively monitoring skin metabolism through NAD(P)H and other intrinsic fluorophores, and offers immediate future directions for assessing necrosis in the clinic. The objective of this study was to assess whether phasor FLIM could be used to evaluate skin flap status and treatment efficacy in ex vivo skin sections. Phasor maps revealed differences in growth factor treatment and region, but changes in skin flap autofluorescence at 755nm excitation and 460nm emission were not just related to NAD(P)H. A …


Using Feature Extraction From Deep Convolutional Neural Networks For Pathological Image Analysis And Its Visual Interpretability, Wei-Wen Hsu Jul 2019

Using Feature Extraction From Deep Convolutional Neural Networks For Pathological Image Analysis And Its Visual Interpretability, Wei-Wen Hsu

Electrical & Computer Engineering Theses & Dissertations

This dissertation presents a computer-aided diagnosis (CAD) system using deep learning approaches for lesion detection and classification on whole-slide images (WSIs) with breast cancer. The deep features being distinguishing in classification from the convolutional neural networks (CNN) are demonstrated in this study to provide comprehensive interpretability for the proposed CAD system using the domain knowledge in pathology. In the experiment, a total of 186 slides of WSIs were collected and classified into three categories: Non-Carcinoma, Ductal Carcinoma in Situ (DCIS), and Invasive Ductal Carcinoma (IDC). Instead of conducting pixel-wise classification (segmentation) into three classes directly, a hierarchical framework with the …


Designing A Low-Cost Ultrasound Pulser, Andrea Huey Jun 2019

Designing A Low-Cost Ultrasound Pulser, Andrea Huey

Honors Theses

Ultrasound imaging allows for those studying living beings to see inside a subject without causing it harm. This allows for real-time images to be taken, leading to ease of observational research. However, while this technology is beneficial to those who utilize it, the devices used to create and receive ultrasound pulses can be incredibly complex, allowing for precise adjustment of the output signal and various other functions, and therefore expensive. The focus of this senior project is the design of a low-cost pulser for use with an ultrasound transducer. While it does not have all the high-level functions of the …


Evaluation Of Human Umbilical Vein Endothelial Cells In Blood Vessel Mimics Through Changes In Gene Expression And Caspase Activity, Conor Charles Hedigan Jun 2019

Evaluation Of Human Umbilical Vein Endothelial Cells In Blood Vessel Mimics Through Changes In Gene Expression And Caspase Activity, Conor Charles Hedigan

Master's Theses

Blood vessel mimics (BVMs) are simple tissue engineered blood vessel constructs intended for preclinical testing of vascular devices. This thesis developed and implemented methods to characterize two of these components. The first aim of this thesis investigated the effect of cell culture duration and flow conditions on endothelial cell gene expression, especially regarding endothelial-to-mesenchymal transition (EndMT). A trend of decreased endothelial marker gene expression and increased mesenchymal marker gene expression would indicate EndMT. qPCR analysis revealed that increased cell culture duration did not result in EndMT, and in fact increased endothelial marker expression as cell culture duration increased. Disturbed flow …


A Multimodal Approach To Investigate Brain Reorganization After Spinal Cord Injury Using Functional Magnetic Resonance Imaging And Functional Near-Infrared Spectroscopy, Keerthana Deepti Karunakaran May 2019

A Multimodal Approach To Investigate Brain Reorganization After Spinal Cord Injury Using Functional Magnetic Resonance Imaging And Functional Near-Infrared Spectroscopy, Keerthana Deepti Karunakaran

Dissertations

Traumatic Spinal Cord Injury (SCI) results in structural and functional neurological changes at both the brain and the level of the spinal cord. Anatomical studies indicate decreased grey matter volume in sensorimotor and non-sensorimotor regions of the cortex following SCI; whereas, neurophysiological findings mostly report altered functional activity in the sensorimotor nodes of the cortex, subcortex, and cerebellum. Therefore, it is currently unknown whether tissue atrophy observed in non-motor related areas has any concomitant functional consequences. Furthermore, the neural underpinnings of adaptive neuroplasticity after SCI is not well-defined in the current literature. Hence, this dissertation is a pioneer study investigating …


Dual Modality Optical Coherence Tomography : Technology Development And Biomedical Applications, Farzana Rahmat Zaki May 2019

Dual Modality Optical Coherence Tomography : Technology Development And Biomedical Applications, Farzana Rahmat Zaki

Dissertations

Optical coherence tomography (OCT) is a cross-sectional imaging modality that is widely used in clinical ophthalmology and interventional cardiology. It is highly promising for in situ characterization of tumor tissues. OCT has high spatial resolution and high imaging speed to assist clinical decision making in real-time.

OCT can be used in both structural imaging and mechanical characterization. Malignant tumor tissue alters morphology. Additionally, structural OCT imaging has limited tissue differentiation capability because of the complex and noisy nature of the OCT signal. Moreover, the contrast of structural OCT signal derived from tissue’s light scattering properties has little chemical specificity. Hence, …


Preclinical Imaging Of Multiple Myeloma Therapy Response, Deep Hathi May 2019

Preclinical Imaging Of Multiple Myeloma Therapy Response, Deep Hathi

McKelvey School of Engineering Theses & Dissertations

Multiple myeloma (MM) is a debilitating hematologic malignancy of terminally differentiated plasma cells in the bone marrow (BM). Advances in therapeutic regimens and the use of autologous stem cell transplantation have significantly improved survival rates and quality of life in patients. However, the disease remains incurable, with shorter, successive remission cycles following relapse. To reduce systemic, off-target toxicity and improve quality of life, there is a need for improved stratification of responding patients. Identification of specific, noninvasive, imaging biomarkers that correlate to therapeutic efficacy is an attractive strategy for stratifying responding patients, since the use of positron emission tomography (PET), …


Modeling And Validation Of Tissue Optical Properties In The Photon Transport Regime, Katelyn Heath May 2019

Modeling And Validation Of Tissue Optical Properties In The Photon Transport Regime, Katelyn Heath

Biomedical Engineering Undergraduate Honors Theses

Early detection of changes in epithelial cells, such as the development of neoplastic formations seen in epithelial dysplasia, can indicate regions of the epithelial tissue that are at a high risk for cancerous formation. Using concepts from diffuse reflectance spectroscopy, a Monte Carlo model was developed to predict the reflectance measured by a detector at a small source-detector separation on a microendoscope. The Monte Carlo results were then used to calculate a mathematical relationship between the reflectance and distance that can be used to determine optical properties in a tissue sample. This model was validated with liquid phantoms of specified …


Cell Imaging And Data Analysis For Biomaterial-Mammalian Co-Cultures, Jefferson Pontsler May 2019

Cell Imaging And Data Analysis For Biomaterial-Mammalian Co-Cultures, Jefferson Pontsler

All Graduate Plan B and other Reports, Spring 1920 to Spring 2023

Microscopic bioimaging is a useful approach to study cell-biomaterial interactions which are vital to the biomedical application of biomaterials. Through microscopic imaging, numerous cellular responses, such as proliferation, uptake, and death, can be recorded, characterized and analyzed.

In this thesis, I first provided basic introductions to the imaging techniques and analysis tools, especially those that are highly relevant to the studies of biomaterials and cell interactions. I also detailed the adaptation of these techniques and tools in the application of two specific research projects in biomaterials, with special focuses on the imaging and analysis.

The first project assessed the subtle …


Diffuse Reflectance Spectroscopy To Quantify In Vivo Tissue Optical Properties: Applications In Human Epithelium And Subcutaneous Murine Colon Cancer, Gage Joseph Greening May 2019

Diffuse Reflectance Spectroscopy To Quantify In Vivo Tissue Optical Properties: Applications In Human Epithelium And Subcutaneous Murine Colon Cancer, Gage Joseph Greening

Graduate Theses and Dissertations

Colorectal cancer is the 4th most common and 2nd deadliest cancer. Problems exist with predicting which patients will respond best to certain therapy regimens. Diffuse reflectance spectroscopy has been suggested as a candidate to optically monitor a patient’s early response to therapy and has been received favorably in experimentally managing other cancers such as breast and skin. In this dissertation, two diffuse reflectance spectroscopy probes were designed: one with a combined high-resolution microendoscopy modality, and one that was optimized for acquiring data from subcutaneous murine tumors. For both probes, percent errors for estimating tissue optical properties (reduced scattering coefficient and …


Vector Flow Imaging In Pediatric Cardiology - Extracting And Validating Data, Mason Belue May 2019

Vector Flow Imaging In Pediatric Cardiology - Extracting And Validating Data, Mason Belue

Biomedical Engineering Undergraduate Honors Theses

In the field of bedside cardiac diagnostic imaging, Doppler Ultrasound (DU) is the gold standard for diagnosing heart conditions. The largest benefit of DU is its ability to noninvasively image cardiac flow and allow the estimation of blood velocity and quantification of anatomical disease. However, to get correct velocity estimation, the position of the transducer in relation to the flow field needs to be known. This is the problem of angle/direction dependency and limits DUs accuracy when imaging in areas where perfect alignment or exact position of the transducer in relation to flow field is not possible or known, such …


Investigation Of Acute Radiation-Induced Changes In Oxygenation In A Murine Breast Tumor Model, Alaa Abdelgawad May 2019

Investigation Of Acute Radiation-Induced Changes In Oxygenation In A Murine Breast Tumor Model, Alaa Abdelgawad

Biomedical Engineering Undergraduate Honors Theses

Around 50-60% of all cancer patients undergo radiation therapy. Although some patients show complete response with no recurrence, a significant proportion of the population still develop radiation resistance. It is important to identify tumor resistance at early stages of therapy in order to adjust treatment protocol and avoid extra exposure to radiation. Current methods to assess treatment response are only limited to anatomical measurements of tumor volume after therapy. Novel approaches that shed the light on any functional information during the course of radiotherapy could significantly improve our ability to identify patients who do not respond to radiation therapy. Diffuse …


Autofluorescence To Study The Effects Of Acid Concentration On Cellular Metabolism In Vitro, Robin L. Raley May 2019

Autofluorescence To Study The Effects Of Acid Concentration On Cellular Metabolism In Vitro, Robin L. Raley

Chemistry & Biochemistry Undergraduate Honors Theses

Ultraviolet (UV) radiation-induced sunburns and their accompanying afflictions are a growing public health concern in the United States. There is a need for techniques that can accurately and non-invasively characterize the physiology of sunburned skin tissue directly after UV-damage and applying a topical skin treatment to relieve pain and promote healing. Two-photon excited fluorescence (TPEF) microscopy and fluorescence lifetime imaging (FLIM) can be used to investigate metabolic processes in live cells through endogenous fluorescence of the cofactors, NADH and FAD. These methods employ the optical redox ratio of FAD/(NADH+FAD), mean NADH lifetime, and the separation of the free and bound …


A Structured-Light Surface Scanning System To Evaluate Breast Morphology In Standing And Supine Positions, Olivia Tong Apr 2019

A Structured-Light Surface Scanning System To Evaluate Breast Morphology In Standing And Supine Positions, Olivia Tong

Electronic Thesis and Dissertation Repository

Objective and accurate surface measurements of the human breast are important for surgical planning and outcome assessment. Breast shapes are affected by gravitational loads and deformities, and the measurements obtained in the standing position may not correlate well with measurements in supine position, which is more representative of breast surgery. To evaluate the effect of changes in body posture on breast morphology, a dual color 3D surface imaging system capable of scanning patients in both the supine and standing positions was developed. System performance was established by assessing the surface coverage and accuracy between a CAD breast model and 3D …


Tissue Equivalent Gellan Gum Gel Materials For Clinical Mri And Radiation Dosimetry, Pawel Brzozowski Apr 2019

Tissue Equivalent Gellan Gum Gel Materials For Clinical Mri And Radiation Dosimetry, Pawel Brzozowski

Electronic Thesis and Dissertation Repository

Hydrogels contain high amount of water allowing their use as surrogates to human tissues with specific properties that can be tuned by additives. Gellan gum is a gel-forming material of interest and is a replacement for other common gelling agent with limited use as a tissue phantom. Therefore, this thesis examines the application of gellan gum gels as a novel magnetic resonance imaging (MRI) phantom with a design of experiments model to obtain tunable properties. The analysis was extended to include mechanical and electrical properties with a separate design of experiment. Gels doped with synthesized superparamagnetic iron oxide nanoparticles (SPIONs) …


Improving Material Mapping In Glenohumeral Finite Element Models: A Multi-Level Evaluation, Nikolas K. Knowles Apr 2019

Improving Material Mapping In Glenohumeral Finite Element Models: A Multi-Level Evaluation, Nikolas K. Knowles

Electronic Thesis and Dissertation Repository

An improved understanding of glenohumeral bone mechanics can be elucidated using computational models derived from computed tomography data. Although computational tools, such as finite element analysis, provide a powerful quantitative technique to evaluate and answer a variety of biomechanical and clinical questions, glenohumeral finite element models (FEMs) have not kept pace with improvements in modeling techniques or model validation methods seen in other anatomic locations. The present work describes the use of multi-level computational modeling to compare, develop and validate FEMs of the glenohumeral joint.

Common density-modulus relationships within the literature were evaluated using a multi-level comparative testing methodology to …


Regularized Fourier Ptychographic Microscopy, Shiqi Xu Apr 2019

Regularized Fourier Ptychographic Microscopy, Shiqi Xu

McKelvey School of Engineering Theses & Dissertations

Quantitative phase image (QPI) is a popular microscopy technique for studying cell morphology. Recently, Fourier ptychographic microscopy (FPM) has emerged as a low-cost computational microscopy technique for forming high-resolution wide-field QPI images by taking multiple images from different illumination angles. However, the applicability of FPM to dynamic imaging is limited by its high data requirement. In this thesis, we propose new methods for highly compressive FPM imaging using a data-adaptive sparse coding and an online plug-and-play (PnP) method with non-local priors based on the fast iterative shrinkage/threshold algorithm (FISTA). We validate the proposed method on both simulated and experimental data …


Automated Microscope Stage, Corin Nishimoto, Alison Flesch, Theo Anastos Mar 2019

Automated Microscope Stage, Corin Nishimoto, Alison Flesch, Theo Anastos

Biomedical Engineering

This document seeks to describe the background information, customer requirements, design specifications, indications for use, selected materials, proposed budget, prototypes, final design, manufacturing processes, and testing methods regarding the CellOptimizer automated microscope stage product.


Quantification Of Myocardial Mechanics In Left Ventricles Under Inotropic Stimulation And In Healthy Right Ventricles Using 3d Dense Cmr, Zhan-Qiu Liu Jan 2019

Quantification Of Myocardial Mechanics In Left Ventricles Under Inotropic Stimulation And In Healthy Right Ventricles Using 3d Dense Cmr, Zhan-Qiu Liu

Theses and Dissertations--Mechanical Engineering

Statistical data from clinical studies indicate that the death rate caused by heart disease has decreased due to an increased use of evidence-based medical therapies. This includes the use of magnetic resonance imaging (MRI), which is one of the most common non-invasive approaches in evidence-based health care research. In the current work, I present 3D Lagrangian strains and torsion in the left ventricle of healthy and isoproterenol-stimulated rats, which were investigated using Displacement ENcoding with Stimulated Echoes (DENSE) cardiac magnetic resonance (CMR) imaging. With the implementation of the 12-segment model, a detailed profile of regional cardiac mechanics was reconstructed for …


Utilizing Immunopet To Measure Tumor Response To Treatment In Breast Cancer, Brooke Mcknight Jan 2019

Utilizing Immunopet To Measure Tumor Response To Treatment In Breast Cancer, Brooke Mcknight

Wayne State University Dissertations

With a broad spectrum of therapies available for treating breast cancer, the need for personalized medicine tailoring the cure according to phenotype is evident. Such an approach may be fully realized with the development of quantitative imaging technologies for disease detection, staging and diagnosis, without increasing patient burden. Immuno-positron emission tomography (PET) combines the targeted specificity of antibodies with the sensitivity of PET for whole body imaging by targeting molecular features amplified in lesions. ImmunoPET probes targeting different antigens and their utility to measure response to treatment were explored. 89Zr-trastuzumab was employed as a surrogate readout of Src inhibition after …