Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Biomedical Engineering and Bioengineering

Network-Level Mechanisms Underlying Effects Of Transcranial Direct Current Stimulation (Tdcs) On Visuomotor Learning, Pejman Sehatpour, Clément Dondé, Matthew J. Hoptman, Johanna Kreither, Devin Adair, Elisa Dias, Blair Vail, Stephanie Rohrig, Gail Silipo, Javier Lopez-Calderon, Antigona Martinez, Daniel C. Javitt Dec 2020

Network-Level Mechanisms Underlying Effects Of Transcranial Direct Current Stimulation (Tdcs) On Visuomotor Learning, Pejman Sehatpour, Clément Dondé, Matthew J. Hoptman, Johanna Kreither, Devin Adair, Elisa Dias, Blair Vail, Stephanie Rohrig, Gail Silipo, Javier Lopez-Calderon, Antigona Martinez, Daniel C. Javitt

Publications and Research

Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation approach in which low level currents are administered over the scalp to influence underlying brain function. Prevailing theories of tDCS focus on modulation of excitation-inhibition balance at the local stimulation location. However, network level effects are reported as well, and appear to depend upon differential underlying mechanisms. Here, we evaluated potential network-level effects of tDCS during the Serial Reaction Time Task (SRTT) using convergent EEG- and fMRI-based connectivity approaches. Motor learning manifested as a significant (p <.0001) shift from slow to fast responses and corresponded to a significant increase in beta-coherence (p <.0001) and fMRI connectivity (p <.01) particularly within the visual-motor pathway. Differential patterns of tDCS effect were observed within different parametric task versions, consistent with network models. Overall, these findings demonstrate objective physiological effects of tDCS at the network level that result in effective behavioral modulation when tDCS parameters are matched to network-level requirements of the underlying task.


Developing An Imaging Biomarker To Detect Aberrant Brain Connectivity In Individual Patients, Esther Cox Apr 2017

Developing An Imaging Biomarker To Detect Aberrant Brain Connectivity In Individual Patients, Esther Cox

Master's Theses (2009 -)

Resting state functional MRI (rsfMRI) has been proven to be a valuable tool in clinical applications such as pre-surgical mapping, but there is not yet a functional and usable algorithm that can be used by physicians in a clinical setting to evaluate an individual patient for diseases and aberrant brain connectivity. If a physician wants to evaluate a patient in this way, the rsfMRI data must be looked at “by hand,” i.e. the physician must manually evaluate the data and identify the functional ICN’s and whether they are normal or aberrant. An algorithm that would automate this process and supplement …


Structural-Functional Brain Connectivity Underlying Integrative Sensorimotor Function After Stroke, Benjamin Thomas Kalinosky Apr 2016

Structural-Functional Brain Connectivity Underlying Integrative Sensorimotor Function After Stroke, Benjamin Thomas Kalinosky

Dissertations (1934 -)

In this dissertation research project, we demonstrated the relationship between the structural and functional connections across the brain in stroke survivors. We used this information to predict arm function in stroke survivors, suggesting that the tools developed through this research will be useful for prescribing individualized rehabilitation strategies in people after stroke. Current clinical methods for rehabilitating sensorimotor function after stroke are not based on the locus of injury in the brain. Instead, therapies are generalized, treating symptoms such as weakness and spasticity. This results in outcomes that are highly variable, with severity of impairment immediately following stroke as the …