Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Biomedical Engineering and Bioengineering

Neuroimaging And Neuromodulation Approaches To Study Eating Behavior And Prevent And Treat Eating Disorders And Obesity, D. Val-Laillet, E. Aarts, B. Weber, M. Ferrari, V. Quaresima, L. E. Stoeckel, M. Alonso-Alonso, M. Audette, C. H. Malbert, E. Stice Jan 2015

Neuroimaging And Neuromodulation Approaches To Study Eating Behavior And Prevent And Treat Eating Disorders And Obesity, D. Val-Laillet, E. Aarts, B. Weber, M. Ferrari, V. Quaresima, L. E. Stoeckel, M. Alonso-Alonso, M. Audette, C. H. Malbert, E. Stice

Computational Modeling & Simulation Engineering Faculty Publications

Functional, molecular and genetic neuroimaging has highlighted the existence of brain anomalies and neural vulnerability factors related to obesity and eating disorders such as binge eating or anorexia nervosa. In particular, decreased basal metabolism in the prefrontal cortex and striatum as well as dopaminergic alterations have been described in obese subjects, in parallel with increased activation of reward brain areas in response to palatable food cues. Elevated reward region responsivity may trigger food craving and predict future weight gain. This opens the way to prevention studies using functional and molecular neuroimaging to perform early diagnostics and to phenotype subjects at …


Modification And Evaluation Of A Brain Computer Interface System To Detect Motor Intention, Christopher V. Hagerty-Hoff Jan 2015

Modification And Evaluation Of A Brain Computer Interface System To Detect Motor Intention, Christopher V. Hagerty-Hoff

Theses and Dissertations

It is widely understood that neurons within the brain produce electrical activity, and electroencephalography—a technique used to measure biopotentials with electrodes placed upon the scalp—has been used to observe it. Today, scientists and engineers work to interface these electrical neural signals with computers and machines through the field of Brain-Computer Interfacing (BCI). BCI systems have the potential to greatly improve the quality of life of physically handicapped individuals by replacing or assisting missing or debilitated motor functions. This research thus aims to further improve the efficacy of the BCI based assistive technologies used to aid physically disabled individuals. This study …