Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Biomedical Engineering and Bioengineering

Effect Of Amputation On Muscle Structure Properties In A Rabbit Model, Roy Caleb Stubbs May 2023

Effect Of Amputation On Muscle Structure Properties In A Rabbit Model, Roy Caleb Stubbs

Masters Theses

After amputation, muscles in the residual limb are detached from their insertion points and no longer span the missing joints. Our objective was to quantify the effect of amputation-induced disuse on residual muscle structure, an indirect indicator of muscle force-generating capacity. One hind paw was surgically removed at the ankle joint of ten rabbits. At two weeks (n=5) and 4 weeks (n=5) post-amputation and for select muscles (gastrocnemius, soleus, tibialis cranialis, extensor digitorum, and flexor digitorum superficialis), we measured and computed several muscle structure properties. Additionally, we qualitatively assessed the muscle fiber appearance of histological samples at each timepoint. At …


Comparison Of Varying Tissue Freezing Methods On Murine Colonic Tissue, James Hughes May 2018

Comparison Of Varying Tissue Freezing Methods On Murine Colonic Tissue, James Hughes

Biomedical Engineering Undergraduate Honors Theses

Histology often requires a tissue specimen to be embedded so that it may be sectioned, stained, and mounted on a microscope slide for viewing. One common method of tissue embedding for rapid histology is freezing, since freezing allows tissue to be stored without the need for fixing. Frozen tissue is often embedded in a medium such as Optimal Cutting Temperature (OCT) compound so that it can be sectioned using a cryostat. However, factors such as ice-crystal formation during the freezing process can cause damage to the tissue. As such, the protocol used to freeze the tissue can affect the quality …