Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Biomedical Engineering and Bioengineering

Multi-Dimensional Extension Of The Alternating Minimization Algorithm In X-Ray Computed Tomography, Jingwei Lu Aug 2019

Multi-Dimensional Extension Of The Alternating Minimization Algorithm In X-Ray Computed Tomography, Jingwei Lu

McKelvey School of Engineering Theses & Dissertations

X-ray computed tomography (CT) is an important and effective tool in medical and industrial imaging applications. The state-of-the-art methods to reconstruct CT images have had great development but also face challenges. This dissertation derives novel algorithms to reduce bias and metal artifacts in a wide variety of imaging modalities and increase performance in low-dose scenarios. The most widely available CT systems still use the single-energy CT (SECT), which is good at showing the anatomic structure of the patient body. However, in SECT image reconstruction, energy-related information is lost. In applications like radiation treatment planning and dose prediction, accurate energy-related information …


Multi-Dimensional Extension Of The Alternating Minimization Algorithm In X-Ray Computed Tomography, Jingwei Lu Aug 2019

Multi-Dimensional Extension Of The Alternating Minimization Algorithm In X-Ray Computed Tomography, Jingwei Lu

McKelvey School of Engineering Theses & Dissertations

X-ray computed tomography (CT) is an important and effective tool in medical and industrial

imaging applications. The state-of-the-art methods to reconstruct CT images have had

great development but also face challenges. This dissertation derives novel algorithms to

reduce bias and metal artifacts in a wide variety of imaging modalities and increase performance

in low-dose scenarios.

The most widely available CT systems still use the single-energy CT (SECT), which is

good at showing the anatomic structure of the patient body. However, in SECT image

reconstruction, energy-related information is lost. In applications like radiation treatment

planning and dose prediction, accurate energy-related information …


Quantitatively Studying Tissue Damage In Multiple Sclerosis Using Gradient Recalled Echo Mri Sequences, Biao Xiang Aug 2019

Quantitatively Studying Tissue Damage In Multiple Sclerosis Using Gradient Recalled Echo Mri Sequences, Biao Xiang

Arts & Sciences Electronic Theses and Dissertations

Multiple Sclerosis (MS) is an unpredictable, often disabling disease of the central nervous system (CNS) that disrupts the flow of information within the brain, and between the brain the body. MS is the most common progressive neurologic disease of young adults, affecting approximately 2.3 million people worldwide. It is estimated that more than 700,000 individuals are affected by MS in United States. While MS has been studied for decades, the cause of it is still not definite and a fully effective treatment for MS is not yet available. Magnetic resonance imaging (MRI) has been used extensively in MS diagnosis and …


System Integration Of C-Arm Robotic Prototype Using Motion Capture Guidance For Accurate Repositioning, Alireza Yazdanshenas Jul 2019

System Integration Of C-Arm Robotic Prototype Using Motion Capture Guidance For Accurate Repositioning, Alireza Yazdanshenas

Mechanical Engineering Theses

One of the important surgical tools in spinal surgery is the C-Arm X-ray System. The C-Arm is a large “C” shaped and manually maneuvered arm that provides surgeons and X-ray technicians the ability to take quick quality X-rays during surgery. Because of its five degrees of freedom, the C-Arm can be manually maneuvered around the patient to provide many angles and perspectives, ensuring surgical success.

This system works fine for most surgical procedures but falls short when the C-Arm must be moved out of the way for complicated surgical procedures.

The aim of this thesis is to develop an accurate …


A Microfluidics-Based Cross-Flow Filtration Platform For Rapid Processing Of Amphiphilic Biomarkers From Blood, Kiersten D. Lenz Jul 2019

A Microfluidics-Based Cross-Flow Filtration Platform For Rapid Processing Of Amphiphilic Biomarkers From Blood, Kiersten D. Lenz

Biomedical Engineering ETDs

Early and accurate detection of bacterial infections can help save lives, prevent the spread of disease, and decrease the overuse of antibiotics. Our team at the Los Alamos National Laboratory has developed novel assays to detect bacterial biomarkers from patient blood at the point-of-care in order to facilitate a universal diagnostic platform. However, these biomarkers are amphiphilic in nature, and this biochemical property causes them to be sequestered by high-density and low-density lipoproteins (HDL and LDL) in the host’s blood. Extraction of the bacterial biomarkers from the lipoprotein complexes is thereby required for the development and deployment of a diagnostic …


Neurostimulator With Waveforms Inspired By Nature For Wearable Electro-Acupuncture, Jose Aquiles Parodi Amaya Jun 2019

Neurostimulator With Waveforms Inspired By Nature For Wearable Electro-Acupuncture, Jose Aquiles Parodi Amaya

LSU Doctoral Dissertations

The work presented here has 3 goals: establish the need for novel neurostimulation waveform solutions through a literature review, develop a neurostimulation pulse generator, and verify the operation of the device for neurostimulation applications.

The literature review discusses the importance of stimulation waveforms on the outcomes of neurostimulation, and proposes new directions for neurostimulation research that would help in improving the reproducibility and comparability between studies.

The pulse generator circuit is then described that generates signals inspired by the shape of excitatory or inhibitory post-synaptic potentials (EPSP, IPSP). The circuit analytical equations are presented, and the effects of the circuit …


A Brain-Computer Interface For Closed-Loop Sensory Stimulation During Motor Training In Patients With Tetraplegia, Sarah Helen Thomas Jan 2019

A Brain-Computer Interface For Closed-Loop Sensory Stimulation During Motor Training In Patients With Tetraplegia, Sarah Helen Thomas

Theses and Dissertations--Biomedical Engineering

Normal movement execution requires proper coupling of motor and sensory activation. An increasing body of literature supports the idea that incorporation of sensory stimulation into motor rehabilitation practices increases its effectiveness. Paired associative stimulation (PAS) studies, in which afferent and efferent pathways are activated in tandem, have brought attention to the importance of well-timed stimulation rather than non-associative (i.e., open-loop) activation. In patients with tetraplegia resulting from spinal cord injury (SCI), varying degrees of upper limb function may remain and could be harnessed for rehabilitation. Incorporating associative sensory stimulation coupled with self-paced motor training would be a means for supplementing …