Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Analytical, Diagnostic and Therapeutic Techniques and Equipment

University of Nebraska - Lincoln

Department of Mechanical and Materials Engineering: Faculty Publications

Series

Articles 1 - 2 of 2

Full-Text Articles in Biomedical Engineering and Bioengineering

Background Differences In Baseline And Stimulated Mmp Levels Influence Abdominal Aortic Aneurysm Susceptibility, Matthew A. Dale, Melissa K. Suh, Shijia Zhao, Trevor Meisinger, Linxia Gu, Vicki J. Swier, Devendra K. Agrawal, Timothy Greiner, Jeffrey S. Carson, B. Timothy Baxter, Wanfen Xiong Dec 2015

Background Differences In Baseline And Stimulated Mmp Levels Influence Abdominal Aortic Aneurysm Susceptibility, Matthew A. Dale, Melissa K. Suh, Shijia Zhao, Trevor Meisinger, Linxia Gu, Vicki J. Swier, Devendra K. Agrawal, Timothy Greiner, Jeffrey S. Carson, B. Timothy Baxter, Wanfen Xiong

Department of Mechanical and Materials Engineering: Faculty Publications

Objective: Evidence has demonstrated profound influence of genetic background on cardiovascular phenotypes. Murine models in Marfan syndrome (MFS) have shown that genetic background-related variations affect thoracic aortic aneurysm formation, rupture, and lifespan of mice. MFS mice with C57Bl/6 genetic background are less susceptible to aneurysm formation compared to the 129/SvEv genetic background. In this study, we hypothesize that susceptibility to abdominal aortic aneurysm (AAA) will be increased in 129/SvEv mice versus C57Bl/6 mice. We tested this hypothesis by assessing differences in aneurysm size, tissue properties, immune response, and MMP expression.

Methods: Mice of C57Bl/6 or 129/SvEv background underwent AAA induction …


Micromechanical Analysis Of Nanoparticle-Reinforced Dental Composites, Yi Hua, Linxia Gu, Hidehiko Watanabe Jan 2013

Micromechanical Analysis Of Nanoparticle-Reinforced Dental Composites, Yi Hua, Linxia Gu, Hidehiko Watanabe

Department of Mechanical and Materials Engineering: Faculty Publications

The mechanical behavior of TiO2 nanoparticle-reinforced resin-based dental composites was characterized in this work using a three-dimensional nanoscale representative volume element. The impacts of nanoparticle volume fraction, aspect ratio, stiffness, and interphase zone between the resin matrix and nanoparticle on the bulk properties of the composite were characterized. Results clearly demonstrated the mechanical advantage of nanocomposites in comparison to microfiber-reinforced composites. The bulk response of the nanocomposite could be further enhanced with the increased nanoparticle volume fraction, or aspect ratio, while the influence of nanoparticle stiffness was minimal. The effective Young’s modulus and yield strength of the composite was …