Open Access. Powered by Scholars. Published by Universities.®

Automotive Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Automotive Engineering

Resilience For Multi-Filter All-Source Navigation Framework With Integrity, Jonathon S. Gipson, Robert C. Leishman Jan 2021

Resilience For Multi-Filter All-Source Navigation Framework With Integrity, Jonathon S. Gipson, Robert C. Leishman

Faculty Publications

The Autonomous and Resilient Management of All-source Sensors (ARMAS) framework monitors residual-space test statistics across unique sensor-exclusion banks of filters, (known as subfilters) to provide a resilient, fault-resistant all-source navigation architecture with assurance. A critical assumption of this architecture, demonstrated in this paper, is fully overlapping state observability across all subfilters. All-source sensors, particularly those that only provide partial state information (altimeters, TDoA, AOB, etc.) do not intrinsically meet this requirement.
This paper presents a novel method to monitor real-time overlapping position state observability and introduces an "observability bank" within the ARMAS framework, known as Stable Observability Monitoring (SOM). SOM …


Tracked Vehicle Physics-Based Energy Modelling And Series Hybrid System Optimisation For The Bradley Fighting Vehicle, Travis E. Mcwhirter, Torrey J. Wagner, John E. Stubbs, Denise M. Rizzo, Jada B. Williams Dec 2019

Tracked Vehicle Physics-Based Energy Modelling And Series Hybrid System Optimisation For The Bradley Fighting Vehicle, Travis E. Mcwhirter, Torrey J. Wagner, John E. Stubbs, Denise M. Rizzo, Jada B. Williams

Faculty Publications

A hybrid electric tracked ground vehicle (HETGV) can reduce military fuel usage, however a review of current tools determined they are not suitable to estimate HEGTV performance. Based on topographic data and vehicle attributes, this research developed an estimation tool by creating a model to determine tracked vehicle energy and fuel requirements, and using these requirements, created a HEGTV cost and performance optimisation for the Bradley fighting vehicle energy system. The optimised design reduced fuel consumption by 15%, and met the vehicle's peak power requirement of 365 kW, with a recommended configuration of a 135 kW generator and 100 kWh …