Open Access. Powered by Scholars. Published by Universities.®

Automotive Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Automotive Engineering

Design And Validation Of An Aerodynamic System For A Formula Sae® Vehicle Using Vehicle Dynamic Simulation And Experimentation, Evan S. Cole Jan 2023

Design And Validation Of An Aerodynamic System For A Formula Sae® Vehicle Using Vehicle Dynamic Simulation And Experimentation, Evan S. Cole

Graduate Theses, Dissertations, and Problem Reports

This thesis presents the design, simulation, and experimental validation for the aerodynamic system for a Formula SAE® vehicle. The Society of Automotive Engineers ® (SAE) hosts a collegiate competition annually called Formula SAE® where students design, fabricate, and test a small “formula style” vehicle. The vehicle performs in relatively slow maneuvers, around different courses and tests to evaluate the vehicle’s overall performance. Over the years, collegiate teams have put significant research into the design and manufacturing of the aerodynamics of these vehicles. In order to justify this undertaking for future teams at West Virginia University’s Formula SAE® program, a comprehensive …


Investigating The Efficiency Of Energy Transfer In Vehicular Motion, Joshua M. Etukudo Jan 2021

Investigating The Efficiency Of Energy Transfer In Vehicular Motion, Joshua M. Etukudo

Senior Projects Spring 2021

One of my principal interests in life is transportation which involves building and working with vehicles, and that is why I chose to pursue this project. This write-up, in addition to being a small-scale study of the various properties of automobiles, is to serve as a guide for others who wish to pursue such an endeavor in the years to come. To do this, I first take a look at three of the many key structures which enable vehicular movement: The engine, the wheels and the steering system. After this, I give a detailed recount of how I built the …


Human Powered Vehicle Internal Systems Design, Zachary Broadbent, Jordan Boos, Patrick Gaertner, Caleb Miner Jan 2020

Human Powered Vehicle Internal Systems Design, Zachary Broadbent, Jordan Boos, Patrick Gaertner, Caleb Miner

Williams Honors College, Honors Research Projects

The objective of this design project is to redesign the seat and steering system for the Human Powered Vehicle Team. The goal of the seat design is too improve ergonomics by making it more comfortable and adjustable. In making the seat adjustable, it will be easier for drivers to achieve an optimal efficiency when pedaling. The aim for steering will be to improve the ergonomics as well as performance by analyzing steering systems in the past and evaluating how each design was successful and for what reason. Another main goal of the steering system will be improving the stability and …


The Design Of An Innovative Automotive Suspension For Formula Sae Racing Applications, Jared Darius Apr 2019

The Design Of An Innovative Automotive Suspension For Formula Sae Racing Applications, Jared Darius

Senior Honors Theses

This thesis details an analytical approach to an innovative suspension system design for implementation to the Formula SAE collegiate competition. It focuses specifically on design relating to geometry, mathematical modeling, energy element relationships, and computer analysis and simulation to visualize system behavior. The bond graph approach is utilized for a quarter car model to facilitate understanding of the analytical process, then applied to a comparative analysis between two transverse half car models. The second half car model contains an additional transverse linkage with a third damper, and is compared against the baseline of the first half car model without the …


A Novel All Wheel Drive Torque Vectoring Control System Applied To Four Wheel Independent Drive Electric Motor Vehicles Utilizing Super Twisting And Linear Quadratic Regulator Methods, Kenneth Daniel Schmutz Dec 2018

A Novel All Wheel Drive Torque Vectoring Control System Applied To Four Wheel Independent Drive Electric Motor Vehicles Utilizing Super Twisting And Linear Quadratic Regulator Methods, Kenneth Daniel Schmutz

Master's Theses

This thesis contains the design and simulation test results for the implementation of a new all-wheel drive (AWD) torque vectoring (TV) control system. A separate algorithm using standard control methods is included in this study for a comparison. The proposed controller was designed to be applied to an AWD independent drive electric vehicle, however the main concepts can be re-purposed for other vehicle drive train configurations. The purpose of the control system is to assist the driver in achieving a desired vehicle trajectory whilst also maintaining stability and control of the vehicle. This is accomplished by measuring various real time …


Daimscale — 1:14th Tractor-Trailer For Testing Driver Assistance Technology, Christopher Marrale, Jase Sasaki, Devin Bodmer Dec 2018

Daimscale — 1:14th Tractor-Trailer For Testing Driver Assistance Technology, Christopher Marrale, Jase Sasaki, Devin Bodmer

Mechanical Engineering

Active driver assistance systems are becoming increasingly wide-spread throughout the automotive industry due to their potential for safer roads and decreased costs of transportation, but testing these systems on real trucks can be time consuming, dangerous, and costly. Testing these systems on a small-scale tractor-trailer combination will lead to faster and more efficient development of driver assistance systems and can be used by both engineers and students, leading to a larger field of experienced developers to improve these systems.

Our goal will be to design, manufacture, and build a scale 6x2 model of the tractor portion of a Daimler semi-truck …


3d Infrastructure Condition Assessment For Rail Highway Applications, Teng Wang Jan 2016

3d Infrastructure Condition Assessment For Rail Highway Applications, Teng Wang

Theses and Dissertations--Civil Engineering

Highway roughness is a concern for both the motoring public and highway authorities. Roughness may even increase the risk of crashes. Rail-highway grade crossings are particularly problematic. Roughness may be due to deterioration or simply due to the way the crossing was built to accommodate grade change, local utilities, or rail elevation. With over 216,000 crossings in the US, maintenance is a vast undertaking. While methods are available to quantify highway roughness, no method exists to quantitatively assess the condition of rail crossings. Conventional inspection relies on a labor-intensive process of qualitative judgment. A quantifiable, objective and extensible procedure for …


Design Of The University Of Akron's 2015 Fsae Electric Vehicle Braking System, Nicholas D. Galbincea Jan 2015

Design Of The University Of Akron's 2015 Fsae Electric Vehicle Braking System, Nicholas D. Galbincea

Williams Honors College, Honors Research Projects

The following report encompasses the design of the 2015 University of Akron’s FSAE formula electric braking system. The system is one based on hydraulic braking and designed for a one man performance racing vehicle. The objective of the system is to convert the kinetic energy of the vehicle into thermal energy, allowing the vehicle to decelerate optimally and safely. The design includes three major categories: calculation and evaluation of the hydraulic system in order to select calipers and master cylinders, the design of the pedal box, and the design of the rotors.

The results and findings of the proceeding report …