Open Access. Powered by Scholars. Published by Universities.®

Automotive Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Aerospace Engineering

Theses/Dissertations

Institution
Keyword
Publication Year
Publication

Articles 1 - 29 of 29

Full-Text Articles in Automotive Engineering

Safe Navigation Of Quadruped Robots Using Density Functions, Andrew Zheng Dec 2023

Safe Navigation Of Quadruped Robots Using Density Functions, Andrew Zheng

All Theses

Safe navigation of mission-critical systems is of utmost importance in many modern autonomous applications. Over the past decades, the approach to the problem has consisted of using probabilistic methods, such as sample-based planners, to generate feasible, safe solutions to the navigation problem. However, these methods use iterative safety checks to guarantee the safety of the system, which can become quite complex. The navigation problem can also be solved in feedback form using potential field methods. Navigation function, a class of potential field methods, is an analytical control design to give almost everywhere convergence properties, but under certain topological constraints and …


Cfrp Delamination Density Propagation Analysis By Magnetostriction Theory, Brandon Eugene Williams Dec 2023

Cfrp Delamination Density Propagation Analysis By Magnetostriction Theory, Brandon Eugene Williams

All Dissertations

While Carbon Fiber Reinforced Polymers (CFRPs) have exceptional mechanical properties concerning their overall weight, their failure profile in demanding high-stress environments raises reliability concerns in structural applications. Two crucial limiting factors in CFRP reliability are low-strain material degradation and low fracture toughness. Due to CFRP’s low strain degradation characteristics, a wide variety of interlaminar damage can be sustained without any appreciable change to the physical structure itself. This damage suffered by the energy transfer from high- stress levels appears in the form of microporosity, crazes, microcracks, and delamination in the matrix material before any severe laminate damage is observed. This …


Controlled Manipulation And Transport By Microswimmers In Stokes Flows, Jake Buzhardt Dec 2023

Controlled Manipulation And Transport By Microswimmers In Stokes Flows, Jake Buzhardt

All Dissertations

Remotely actuated microscale swimming robots have the potential to revolutionize many aspects of biomedicine. However, for the longterm goals of this field of research to be achievable, it is necessary to develop modelling, simulation, and control strategies which effectively and efficiently account for not only the motion of individual swimmers, but also the complex interactions of such swimmers with their environment including other nearby swimmers, boundaries, other cargo and passive particles, and the fluid medium itself. The aim of this thesis is to study these problems in simulation from the perspective of controls and dynamical systems, with a particular focus …


Design And Validation Of An Aerodynamic System For A Formula Sae® Vehicle Using Vehicle Dynamic Simulation And Experimentation, Evan S. Cole Jan 2023

Design And Validation Of An Aerodynamic System For A Formula Sae® Vehicle Using Vehicle Dynamic Simulation And Experimentation, Evan S. Cole

Graduate Theses, Dissertations, and Problem Reports

This thesis presents the design, simulation, and experimental validation for the aerodynamic system for a Formula SAE® vehicle. The Society of Automotive Engineers ® (SAE) hosts a collegiate competition annually called Formula SAE® where students design, fabricate, and test a small “formula style” vehicle. The vehicle performs in relatively slow maneuvers, around different courses and tests to evaluate the vehicle’s overall performance. Over the years, collegiate teams have put significant research into the design and manufacturing of the aerodynamics of these vehicles. In order to justify this undertaking for future teams at West Virginia University’s Formula SAE® program, a comprehensive …


On-Board Artificial Intelligence For Failure Detection And Safe Trajectory Generation, Eduardo Morillo Dec 2022

On-Board Artificial Intelligence For Failure Detection And Safe Trajectory Generation, Eduardo Morillo

Doctoral Dissertations and Master's Theses

The use of autonomous flight vehicles has recently increased due to their versatility and capability of carrying out different type of missions in a wide range of flight conditions. Adequate commanded trajectory generation and modification, as well as high-performance trajectory tracking control laws have been an essential focus of researchers given that integration into the National Air Space (NAS) is becoming a primary need. However, the operational safety of these systems can be easily affected if abnormal flight conditions are present, thereby compromising the nominal bounds of design of the system's flight envelop and trajectory following. This thesis focuses on …


Multi-Robot Symbolic Task And Motion Planning Leveraging Human Trust Models: Theory And Applications, Huanfei Zheng Nov 2022

Multi-Robot Symbolic Task And Motion Planning Leveraging Human Trust Models: Theory And Applications, Huanfei Zheng

All Dissertations

Multi-robot systems (MRS) can accomplish more complex tasks with two or more robots and have produced a broad set of applications. The presence of a human operator in an MRS can guarantee the safety of the task performing, but the human operators can be subject to heavier stress and cognitive workload in collaboration with the MRS than the single robot. It is significant for the MRS to have the provable correct task and motion planning solution for a complex task. That can reduce the human workload during supervising the task and improve the reliability of human-MRS collaboration. This dissertation relies …


Machine Learning To Predict Warhead Fragmentation In-Flight Behavior From Static Data, Katharine Larsen Oct 2022

Machine Learning To Predict Warhead Fragmentation In-Flight Behavior From Static Data, Katharine Larsen

Doctoral Dissertations and Master's Theses

Accurate characterization of fragment fly-out properties from high-speed warhead detonations is essential for estimation of collateral damage and lethality for a given weapon. Real warhead dynamic detonation tests are rare, costly, and often unrealizable with current technology, leaving fragmentation experiments limited to static arena tests and numerical simulations. Stereoscopic imaging techniques can now provide static arena tests with time-dependent tracks of individual fragments, each with characteristics such as fragment IDs and their respective position vector. Simulation methods can account for the dynamic case but can exclude relevant dynamics experienced in real-life warhead detonations. This research leverages machine learning methodologies to …


Investigation Of The Low-Temperature Combustion Phenomena Of A Fischer-Tropsch Synthetic Aerospace Fuel In A Constant Volume Combustion Chamber For Greenhouse Gas Reduction, Lily H. Parker Apr 2022

Investigation Of The Low-Temperature Combustion Phenomena Of A Fischer-Tropsch Synthetic Aerospace Fuel In A Constant Volume Combustion Chamber For Greenhouse Gas Reduction, Lily H. Parker

Honors College Theses

Greenhouse gases (GHG) have a harmful effect on our environment as they trap heat in the atmosphere accelerating climate change. As such, the Federal Aviation Administration’s 2025 strategic plan to reduce GHG emissions from air transportation. This call to action for a more environmentally friendly option highlights the importance of synthetic fuels as they are more sustainable compared to traditional fossil fuels. An investigation was conducted into the thermal-physical properties of Synthetic Fischer-Tropsch (F-T) Sustainable Aviation Fuels (SAF) and the Low Temperature Combustion (LTC). LTC is composed of the Low Temperature Heat Release (LTHR) and Negative Temperature Coefficient (NTC) region, …


Concept Evaluation And Development Of A Novel Approach For Integration Of Turbogeneration, Electrification And Supercharging On Heavy Duty Engines, Satyum Joshi Jan 2022

Concept Evaluation And Development Of A Novel Approach For Integration Of Turbogeneration, Electrification And Supercharging On Heavy Duty Engines, Satyum Joshi

Dissertations, Master's Theses and Master's Reports

While many technologies such as electrically assisted turbocharging, exhaust energy recovery and mild hybridization have already proven to significantly increase heavy-duty engine efficiency, the key challenge to their widespread adoption has been their cost effectiveness and packaging. This research specifically addresses these challenges through evaluation and development of a novel technology concept termed as the Integrated Turbogeneration, Electrification and Supercharging (ITES) system. The concept integrates a secondary compressor, a turbocompound/expander turbine and an electric motor through a planetary gearset into the engine cranktrain. The approach enables a reduced system cost and space-claim, while maximizing the efficiency benefits of independent technologies. …


Active Control Of Coherent Structures In An Axisymmetric Jet, Michael Marques Goncalves Aug 2021

Active Control Of Coherent Structures In An Axisymmetric Jet, Michael Marques Goncalves

Doctoral Dissertations and Master's Theses

The primary objective of this work is to develop high-fidelity simulation model for jet noise control predictions and quantify the sound reduction when an external source frequency mode excitation is imposed on the jet flow. Whereas passive approaches using mixing devices, such as chevrons, have been shown to reduce low-frequency noise in jet engines, such approaches incur a performance penalty since they result in a reduced thrust. To avoid a performance penalty in reducing jet noise, the current work investigates a open-loop active noise control (ANC) system that utilizes a unsteady microjet actuator on the nozzle lip in the downstream …


Interfacial Heat Transfer In Squeeze Casting Of Cast Al Alloy A380 And Mg Alloy Az91 And Wrought Alloy Az31, Luyang Ren Jul 2021

Interfacial Heat Transfer In Squeeze Casting Of Cast Al Alloy A380 And Mg Alloy Az91 And Wrought Alloy Az31, Luyang Ren

Electronic Theses and Dissertations

The weight reduction of vehicles and airplanes in the automotive and aerospace industries is urgently needed due to the government regulation and market demand. To satisfy engineering performance of lightweight auto and aero components, high strength light alloys such as aluminum (Al) or magnesium (Mg) alloys are usually adopted. This study was intended to explore a solution for casting high strength cast and wrought Al and Mg alloys. Before light alloys can be utilized for mass production, critical processing parameters need to be accurately determined. The interfacial heat transfer coefficient is one of the most important factors in casting processes. …


Planning Algorithms Under Uncertainty For A Team Of A Uav And A Ugv For Underground Exploration, Matteo De Petrillo Jan 2021

Planning Algorithms Under Uncertainty For A Team Of A Uav And A Ugv For Underground Exploration, Matteo De Petrillo

Graduate Theses, Dissertations, and Problem Reports

Robots’ autonomy has been studied for decades in different environments, but only recently, thanks to the advance in technology and interests, robots for underground exploration gained more attention. Due to the many challenges that any robot must face in such harsh environments, this remains an challenging and complex problem to solve.

As technology became cheaper and more accessible, the use of robots for underground ex- ploration increased. One of the main challenges is concerned with robot localization, which is not easily provided by any Global Navigation Services System (GNSS). Many developments have been achieved for indoor mobile ground robots, making …


Road Racing Aerodynamic Simulation + Testing, Jack Sawyer Jan 2021

Road Racing Aerodynamic Simulation + Testing, Jack Sawyer

Williams Honors College, Honors Research Projects

There are multiple goals for this project. The first goal of this project is to design, assemble and simulate additional aerodynamic components. Another goal is to create a product that can analyze various angles of attack of Aerodynamic components. The product will be used on, or off the track to determine the lift coefficients of vehicles at varying speeds. I will be using my 1992 Honda Civic for testing and compare my physical results to my simulated tests.

The project did come with a list of design and manufacturing challenges along with additional finical cost which has resulted in some …


Mechanical Properties Of Nanomodified Hybrid Gfrp Composite Materials, Micah Rop Kimutai Jan 2021

Mechanical Properties Of Nanomodified Hybrid Gfrp Composite Materials, Micah Rop Kimutai

Electronic Theses and Dissertations

The mechanical behavior of the nanomodified hybrid epoxy matrix was investigated in glass fiber reinforced plastics (GFRP). In this study, five nanocomposites enriched with as received halloysite, nanomer I.28E, HNT-APTES, and the hybrid combinations of the two HNTs with the nanomer I.28E were successfully fabricated. To evaluate the effects and morphological characteristics of the individual fillers and the hybrid configurations on the epoxy resin matrix, TGA, DSC, and DMA were analyzed. To understand the effect of the five configurations on the neat GFRP laminate, mode I interlaminar fracture toughness, tensile, and vibration properties were investigated. Electron microscopy testing techniques were …


Nonlinear Least Squares 3-D Geolocation Solutions Using Time Differences Of Arrival, Michael V. Bredemann Apr 2020

Nonlinear Least Squares 3-D Geolocation Solutions Using Time Differences Of Arrival, Michael V. Bredemann

Mathematics & Statistics ETDs

This thesis uses a geometric approach to derive and solve nonlinear least squares minimization problems to geolocate a signal source in three dimensions using time differences of arrival at multiple sensor locations. There is no restriction on the maximum number of sensors used. Residual errors reach the numerical limits of machine precision. Symmetric sensor orientations are found that prevent closed form solutions of source locations lying within the null space. Maximum uncertainties in relative sensor positions and time difference of arrivals, required to locate a source within a maximum specified error, are found from these results. Examples illustrate potential requirements …


Atv Dynamics And Pediatric Rider Safety, James T. Auxier Ii Jan 2020

Atv Dynamics And Pediatric Rider Safety, James T. Auxier Ii

Theses and Dissertations--Biomedical Engineering

It has been observed through numerous academic and governmental agency studies that pediatric all-terrain vehicle ridership carries significant risk of injury and death. While no doubt valuable to safety, the post-hoc approach employed in these studies does little to explain the why and how behind the risk factors. Furthermore, there has been no prolonged, widespread, organized, and concerted effort to reconstruct and catalog the details and causes of the large (20,000+) number of ATV-related injuries that occur each year as has been done for road-based motor vehicle accidents. This dissertation takes the opposite approach from a meta-analysis and instead examines …


The Effect Of Task Load, Automation Reliability, And Environment Complexity On Uav Supervisory Control Performance, Sarah M. Sherwood Jan 2018

The Effect Of Task Load, Automation Reliability, And Environment Complexity On Uav Supervisory Control Performance, Sarah M. Sherwood

Doctoral Dissertations and Master's Theses

Over the last decade, military unmanned aerial vehicles (UAVs) have experienced exponential growth and now comprise over 40% of military aircraft. However, since most military UAVs require multiple operators (usually an air vehicle operator, payload operator, and mission commander), the proliferation of UAVs has created a manpower burden within the U.S. military. Fortunately, simultaneous advances in UAV automation have enabled a switch from direct control to supervisory control; future UAV operators will no longer directly control a single UAV subsystem but, rather, will control multiple advanced, highly autonomous UAVs. However, research is needed to better understand operator performance in a …


Analyses Of Densely Crosslinked Phenolic Systems Using Low Field Nmr, Jigneshkumar Patel Nov 2017

Analyses Of Densely Crosslinked Phenolic Systems Using Low Field Nmr, Jigneshkumar Patel

Doctoral Dissertations

A uniform dispersion of reactants is necessary to achieve a complete reaction involving multi-components, especially for the crosslinking of rigid high-performance materials. In these reactions, miscibility is crucial for curing efficiency. This miscibility is typically enhanced by adding a third component, a plasticizer. For the reaction of the highly crystalline crosslinking agent hexamethylenetetramine (HMTA) with a strongly hydrogen-bonded phenol formaldehyde resin, furfural has been traditionally used as the plasticizer. However, the reason for its effectiveness is not clear. In this doctoral thesis work, miscibility and crosslinking efficiency of plasticizers in phenolic curing reactions are studied by thermal analysis and spectroscopic …


Design Of A Modified Stewart Platform Manipulator For Misalignment Correction, Adekunle Ayoko Dec 2016

Design Of A Modified Stewart Platform Manipulator For Misalignment Correction, Adekunle Ayoko

Master of Technology Management Plan II Graduate Projects

This thesis work is about the design of a modified Stewart platform manipulator for misalignment correction. The common version of the Stewart platform uses six actuators. The traditional Stewart platform of this kind has a moving top plate and a fixed base plate. However, in this research, the modified design of the traditional Stewart platform is studied. It is designed to be an easy connect-disconnect platform that can wrap around different structures with different cross sections and symmetrically designed. It is able to adjust position easily by using four identical but independent linear actuators populated evenly in two parts fastened …


Optimal Design Of A Thermoelectric Cooling/Heating System For Car Seat Climate Control (Cscc), Abdulmunaem H. Elarusi Aug 2016

Optimal Design Of A Thermoelectric Cooling/Heating System For Car Seat Climate Control (Cscc), Abdulmunaem H. Elarusi

Masters Theses

In this work, optimal design of a thermoelectric device itself (element length, cross section area and number of thermoelements) applied in a car seat climate control (CSCC) is studied analytically using our newly developed optimization method. This method, which is based on the thermoelectric ideal equations along with dimensional analysis allows us to simultaneously obtain the best combination of the thermoelectric parameters in order to improve the performance of the thermoelectric device regarding the cooling/heating power and the coefficient of performance (COP). First, this method was implemented to investigate the optimal design of a readily existing air-to-air thermoelectric system. Then, …


The Impact Of Automation Reliability And Fatigue On Reliance, Ryan Wohleber Jan 2016

The Impact Of Automation Reliability And Fatigue On Reliance, Ryan Wohleber

Electronic Theses and Dissertations

The objective of this research is to inform the design of dynamic interfaces to optimize unmanned aerial vehicle (UAV) operator reliance on automation. A broad goal of the U.S. military is to improve the ratio of UAV operators to UAVs controlled. Accomplishing this goal requires the use of automation; however, the benefits of automation are jeopardized without appropriate operator reliance. To improve reliance on automation, this effort sought to accomplish several objectives organized into phases. The first phase aimed to validate metrics that could be used to gauge operator fatigue online, to understand how the reliability of automated systems influences …


Restraint System Design And Evaluation For Military Specific Applications, Sebastian Karwaczynski Jan 2016

Restraint System Design And Evaluation For Military Specific Applications, Sebastian Karwaczynski

Dissertations, Master's Theses and Master's Reports

This research focuses on designing an optimal restraint system for usage in a military vehicle applications. The designed restraint system must accommodate a wide range of DHM’s and ATD’s with and without PPE such as: helmet, boots, and body armor. The evaluation of the restraint systems were conducted in a simulated vehicle environment, which was utilized to downselect the ideal restraint system for this program.

In December of 2011 the OCP TECD program was formulated to increase occupant protection. To do this, 3D computer models were created to accommodate the entire Soldier population in the Army. These models included the …


Inkjet Printing: Facing Challenges And Its New Applications In Coating Industry, Sadegh Poozesh Jan 2015

Inkjet Printing: Facing Challenges And Its New Applications In Coating Industry, Sadegh Poozesh

Theses and Dissertations--Mechanical Engineering

This study is devoted to some of the most important issues for advancing inkjet printing for possible application in the coating industry with a focus on piezoelectric droplet on demand (DOD) inkjet technology. Current problems, as embodied in liquid filament breakup along with satellite droplet formation and reduction in droplet sizes, are discussed and then potential solutions identified. For satellite droplets, it is shown that liquid filament break-up behavior can be predicted by using a combination of two pi-numbers, including the Weber number, We and the Ohnesorge number, Oh, or the Reynolds number, Re, and the Weber number, …


Use Of A Rolling Road System In Crosswind Conditions, Mau-Kuo Chen Jul 2013

Use Of A Rolling Road System In Crosswind Conditions, Mau-Kuo Chen

Mechanical & Aerospace Engineering Theses & Dissertations

Wind tunnel testing continues to play an important role in vehicle aerodynamic development. Accurate results are strongly associated with whether the wind tunnel can closely simulate the on-road conditions, including the Reynolds number and all boundary conditions. Rolling road systems (or moving belts) have been a successful tool for many auto makers and racing teams to simulate the relative motion between the stationary vehicle model and the floor in the test section. The mechanism of the rolling road system is simple, but how it affects the adjacent flow field and how this flow interacts with the flow underneath the vehicle …


Modeling, Identification, Validation And Control Of A Hybrid Maglev Ball System, Ahmed Elhussein E. Mekky Jul 2012

Modeling, Identification, Validation And Control Of A Hybrid Maglev Ball System, Ahmed Elhussein E. Mekky

Mechanical & Aerospace Engineering Theses & Dissertations

In this thesis, the electrodynamics of a single axis hybrid electromagnetic suspension Maglev system was modeled and validated by applying it to a single axis hybrid maglev ball experiment. By exploring its linearized model, it was shown that the single axis hybrid Maglev ball has inherently unstable dynamics. Three control scenarios were explored based on the linearized model; (1) Proportional, Deferential (PD) control, (2) Proportional, Deferential, Integral (PID) and (3) PID controller with pre-filtering. This thesis has shown that a PID controller with a pre-filtering technique can stabilize such a system and provide a well-controlled response.

A parametric system identification …


Interface Circuit For A Multiple-Beam Tuning-Fork Gyroscope With High Quality Factors, Ren Wang Jul 2011

Interface Circuit For A Multiple-Beam Tuning-Fork Gyroscope With High Quality Factors, Ren Wang

Mechanical & Aerospace Engineering Theses & Dissertations

This research work presents the design, theoretical analysis, fabrication, interface electronics, and experimental results of a Silicon-On-Insulator (SOI) based Multiple-Beam Tuning-Fork Gyroscope (MB-TFG). Based on a numerical model of Thermo-Elastic Damping (TED), a Multiple-Beam Tuning-Fork Structure (MB-TFS) is designed with high Quality factors (Qs) in its two operation modes. A comprehensive theoretical analysis of the MB-TFG design is conducted to relate the design parameters to its operation parameters and further performance parameters. In conjunction with a mask that defines the device through trenches to alleviate severe fabrication effect on anchor loss, a simple one-mask fabrication process is employed to implement …


Stability Analysis, Modeling, Simulation And Experimental Testing Of An Ems Maglev System With Structural Flexibility, Aravind M. Hanasoge Jul 2009

Stability Analysis, Modeling, Simulation And Experimental Testing Of An Ems Maglev System With Structural Flexibility, Aravind M. Hanasoge

Mechanical & Aerospace Engineering Theses & Dissertations

Vehicle-guideway interaction studies of Magnetically Levitated (Maglev) vehicles indicate that structural flexibility can adversely affect the overall stability and performance of such systems. This is one of the reasons why guideways are generally made very rigid. This in turn leads to increased cost of the overall system since guideway construction forms a significant portion of the overall cost. In this dissertation, the influence of structural flexibility on the stability of Electromagnetic Suspension (EMS) Maglev systems is studied. It is shown how inherently unstable and flexible structure EMS Maglev systems can achieve guaranteed stability by using collocated actuators and sensors, along …


External Aerodynamics Of Heavy Ground Vehicles: Computations And Wind Tunnel Testing, Ilhan Bayraktar Apr 2002

External Aerodynamics Of Heavy Ground Vehicles: Computations And Wind Tunnel Testing, Ilhan Bayraktar

Mechanical & Aerospace Engineering Theses & Dissertations

Aerodynamic characteristics of a ground vehicle affect vehicle operation in many ways. Aerodynamic drag, lift and side forces have influence on fuel efficiency, vehicle top speed and acceleration performance. In addition, engine cooling, air conditioning, wind noise, visibility, stability and crosswind sensitivity are some other tasks for vehicle aerodynamics. All of these areas benefit from drag reduction and changing the lift force in favor of the operating conditions. This can be achieved by optimization of external body geometry and flow modification devices. Considering the latter, a thorough understanding of the airflow is a prerequisite.

The present study aims to simulate …


Shape Sensitivity Analysis And Optimization Of Skeletal Structures And Geometrically Nonlinear Solids, Ching-Hung Chuang Apr 1992

Shape Sensitivity Analysis And Optimization Of Skeletal Structures And Geometrically Nonlinear Solids, Ching-Hung Chuang

Mechanical & Aerospace Engineering Theses & Dissertations

Formulations and computational schemes for shape design sensitivity analysis and optimization have been developed for both skeletal structures and geometrically nonlinear elastic solids. The continuum approach, which is based on the weak variational form of the governing differential equation and the concept of the material derivative, plays a central role in such a development.

In the first part of this work, the eigenvalue and eigenvector sensitivity equations for skeletal structures are derived with respect to configuration variables of joint and support locations. This derivation is done by the domain method as well as the boundary method. The discrete approach for …