Open Access. Powered by Scholars. Published by Universities.®

Automotive Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Automotive Engineering

Design And Validation Of An Aerodynamic System For A Formula Sae® Vehicle Using Vehicle Dynamic Simulation And Experimentation, Evan S. Cole Jan 2023

Design And Validation Of An Aerodynamic System For A Formula Sae® Vehicle Using Vehicle Dynamic Simulation And Experimentation, Evan S. Cole

Graduate Theses, Dissertations, and Problem Reports

This thesis presents the design, simulation, and experimental validation for the aerodynamic system for a Formula SAE® vehicle. The Society of Automotive Engineers ® (SAE) hosts a collegiate competition annually called Formula SAE® where students design, fabricate, and test a small “formula style” vehicle. The vehicle performs in relatively slow maneuvers, around different courses and tests to evaluate the vehicle’s overall performance. Over the years, collegiate teams have put significant research into the design and manufacturing of the aerodynamics of these vehicles. In order to justify this undertaking for future teams at West Virginia University’s Formula SAE® program, a comprehensive …


Powertrain Fuel Consumption Modeling And Benchmark Analysis Of A Parallel P4 Hybrid Electric Vehicle Using Dynamic Programming, Aaron Robert Mull Jan 2021

Powertrain Fuel Consumption Modeling And Benchmark Analysis Of A Parallel P4 Hybrid Electric Vehicle Using Dynamic Programming, Aaron Robert Mull

Graduate Theses, Dissertations, and Problem Reports

As regulations on the emission of greenhouse gasses continue to tighten on the automotive industry, the production of hybrid electric vehicles has gained significant popularity in recent years. With the increase in production, there has been a parallel demand in the advancement of both mechanical hardware and control system implementation used in these vehicles. A critical factor in the efficient operation of a hybrid electric vehicle is the energy management strategy where the goal is to maximize the efficient use of fuel energy to propel the vehicle. Designing a fuel-efficient control system is a complex challenge due to the degrees …


Implementation Of Fuzzy Logic Control Into An Equivalent Minimization Strategy For Adaptive Energy Management Of A Parallel Hybrid Electric Vehicle, Jared Alexander Diethorn Jan 2021

Implementation Of Fuzzy Logic Control Into An Equivalent Minimization Strategy For Adaptive Energy Management Of A Parallel Hybrid Electric Vehicle, Jared Alexander Diethorn

Graduate Theses, Dissertations, and Problem Reports

As government agencies continue to tighten emissions regulations due to the continued increase in greenhouse gas production, automotive industries are seeking to produce increasingly efficient vehicle technology. Electric vehicles have been introduced by the industry, showing promising signs of reducing emissions production in the automotive sector. However, many consumers may be hesitant to purchase fully electric vehicles due to several uncertainty variables including available charging stations. Hybrid electric vehicles (HEVs) have been introduced to reduce problems while improving fuel economy. HEVs have led to the demand of creating more advanced controls software to consider multiple components for propulsive power in …


Implementation Of Radial Basis Function Artificial Neural Network Into An Adaptive Equivalent Consumption Minimization Strategy For Optimized Control Of A Hybrid Electric Vehicle, Thomas P. Harris Jan 2020

Implementation Of Radial Basis Function Artificial Neural Network Into An Adaptive Equivalent Consumption Minimization Strategy For Optimized Control Of A Hybrid Electric Vehicle, Thomas P. Harris

Graduate Theses, Dissertations, and Problem Reports

Continued increases in the emission of greenhouse gases by passenger vehicles has accelerated the production of hybrid electric vehicles. With this increase in production, there has been a parallel demand for continuously improving strategies of hybrid electric vehicle control. The goal of an ideal control strategy is to maximize fuel economy while minimizing emissions. The design and implementation of an optimized control strategy is a complex challenge. Methods exist by which the globally optimal control strategy may be found. However, these methods are not applicable in real-world driving applications since these methods require a priori knowledge of the upcoming drive …