Open Access. Powered by Scholars. Published by Universities.®

Aerospace Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Spacecraft

Physical Sciences and Mathematics

Jeremy Straub

Publication Year
File Type

Articles 1 - 3 of 3

Full-Text Articles in Aerospace Engineering

Work Done On The Operating Software For Openorbiter, Dayln Limesand, Timothy Whitney, Jeremy Straub, Ronald Marsh Apr 2015

Work Done On The Operating Software For Openorbiter, Dayln Limesand, Timothy Whitney, Jeremy Straub, Ronald Marsh

Jeremy Straub

The OpenOrbiter Program aims to develop a tem-plate for a CubeSat spacecraft that can be used world-wide to reduce spacecraft development costs1. Unlike other approaches, which may require $50,000 in upfront hardware costs2 or $250,000 in design expenses2, an OPEN-class spacecraft can be built with a parts budget of under $5,0003. This aims to enable low-cost educa-tional missions and missions in developing regions4.


The Critical Role Of Cubesat Spacecraft In A Multi-Tier Mission For Mars Exploration, Jeremy Straub Nov 2014

The Critical Role Of Cubesat Spacecraft In A Multi-Tier Mission For Mars Exploration, Jeremy Straub

Jeremy Straub

A multi-tier architecture is under development (with similar craft heterogeneity to Fink's work on ‘tier scalable’ missions) which will facilitate autonomous local control of multiple heterogeneous craft. This mission architecture has been developed with a Mars mission in mind and has included CubeSats in a variety of critical mission roles.

Two concepts will be presented: the addition of CubeSats to a larger-scale multi-tier mission, where the CubeSats serve a supporting role and a mission driven by CubeSat orbital capabilities. In the first, CubeSats are utilized to augment the area of spatial coverage that can be obtained and the temporal coverage …


Software For Openorbiter, Christoffer Korvald, Jeremy Straub, Scott Kerlin, Ronald Marsh Dec 2013

Software For Openorbiter, Christoffer Korvald, Jeremy Straub, Scott Kerlin, Ronald Marsh

Jeremy Straub

The software development effort for the OpenOrbiter project consists of four teams: operating software development, payload software development, ground station software development and testing. These teams are designing and developing the software required to create a turn-key spacecraft design1 which can be produced at a price point of under USD $5,000 by faculty, students and researchers world-wide2. Through this process, students are gaining valuable real-world experience3,4 in areas of indicated interest5. Each team is headed by a team lead who is responsible for conducting weekly meetings and organizing the activities of the team. During the Fall, 2013 semester, team leads …